These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
251 related articles for article (PubMed ID: 24275201)
1. Unidirectional laning and migrating cluster crystals in confined self-propelled particle systems. Menzel AM J Phys Condens Matter; 2013 Dec; 25(50):505103. PubMed ID: 24275201 [TBL] [Abstract][Full Text] [Related]
2. Collective motion of binary self-propelled particle mixtures. Menzel AM Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Feb; 85(2 Pt 1):021912. PubMed ID: 22463249 [TBL] [Abstract][Full Text] [Related]
3. Nature of the order-disorder transition in the Vicsek model for the collective motion of self-propelled particles. Baglietto G; Albano EV Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Nov; 80(5 Pt 1):050103. PubMed ID: 20364937 [TBL] [Abstract][Full Text] [Related]
4. Collective motion of active Brownian particles with polar alignment. Martín-Gómez A; Levis D; Díaz-Guilera A; Pagonabarraga I Soft Matter; 2018 Apr; 14(14):2610-2618. PubMed ID: 29569673 [TBL] [Abstract][Full Text] [Related]
5. Kinetic theory for systems of self-propelled particles with metric-free interactions. Chou YL; Wolfe R; Ihle T Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Aug; 86(2 Pt 1):021120. PubMed ID: 23005735 [TBL] [Abstract][Full Text] [Related]
6. Self-propelled particle transport in regular arrays of rigid asymmetric obstacles. Potiguar FQ; Farias GA; Ferreira WP Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jul; 90(1):012307. PubMed ID: 25122303 [TBL] [Abstract][Full Text] [Related]
7. Hysteresis, reentrance, and glassy dynamics in systems of self-propelled rods. Kuan HS; Blackwell R; Hough LE; Glaser MA; Betterton MD Phys Rev E Stat Nonlin Soft Matter Phys; 2015; 92(6):060501. PubMed ID: 26764616 [TBL] [Abstract][Full Text] [Related]
8. Tricritical points in a Vicsek model of self-propelled particles with bounded confidence. Romensky M; Lobaskin V; Ihle T Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Dec; 90(6):063315. PubMed ID: 25615230 [TBL] [Abstract][Full Text] [Related]
9. Numerical simulation of the sedimentation of cylindrical pollutant particles in fluid. Lin JZ; Wang YL; Wang WX; Yu ZS J Environ Sci (China); 2002 Oct; 14(4):433-8. PubMed ID: 12491714 [TBL] [Abstract][Full Text] [Related]
10. Fluctuation-induced collective motion: a single-particle density analysis. Lee CF Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Mar; 81(3 Pt 1):031125. PubMed ID: 20365715 [TBL] [Abstract][Full Text] [Related]
11. Aggregation and segregation of confined active particles. Yang X; Manning ML; Marchetti MC Soft Matter; 2014 Sep; 10(34):6477-84. PubMed ID: 25046587 [TBL] [Abstract][Full Text] [Related]
12. Brownian motion of a self-propelled particle. ten Hagen B; van Teeffelen S; Löwen H J Phys Condens Matter; 2011 May; 23(19):194119. PubMed ID: 21525563 [TBL] [Abstract][Full Text] [Related]
13. A particle-field approach bridges phase separation and collective motion in active matter. Großmann R; Aranson IS; Peruani F Nat Commun; 2020 Oct; 11(1):5365. PubMed ID: 33097711 [TBL] [Abstract][Full Text] [Related]
14. Effect of anisotropy on the formation of active particle films. Rebocho TC; Tasinkevych M; Dias CS Phys Rev E; 2022 Aug; 106(2-1):024609. PubMed ID: 36109963 [TBL] [Abstract][Full Text] [Related]
15. Collective motion of self-propelled particles interacting without cohesion. Chaté H; Ginelli F; Grégoire G; Raynaud F Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Apr; 77(4 Pt 2):046113. PubMed ID: 18517696 [TBL] [Abstract][Full Text] [Related]
16. Active nematics with anisotropic friction: the decisive role of the flow aligning parameter. Thijssen K; Metselaar L; Yeomans JM; Doostmohammadi A Soft Matter; 2020 Feb; 16(8):2065-2074. PubMed ID: 32003382 [TBL] [Abstract][Full Text] [Related]
17. Athermal phase separation of self-propelled particles with no alignment. Fily Y; Marchetti MC Phys Rev Lett; 2012 Jun; 108(23):235702. PubMed ID: 23003972 [TBL] [Abstract][Full Text] [Related]
18. Critical Casimir effect in classical binary liquid mixtures. Gambassi A; Maciołek A; Hertlein C; Nellen U; Helden L; Bechinger C; Dietrich S Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Dec; 80(6 Pt 1):061143. PubMed ID: 20365154 [TBL] [Abstract][Full Text] [Related]
19. Avoiding unphysical kinetic traps in Monte Carlo simulations of strongly attractive particles. Whitelam S; Geissler PL J Chem Phys; 2007 Oct; 127(15):154101. PubMed ID: 17949126 [TBL] [Abstract][Full Text] [Related]
20. Dynamical self-regulation in self-propelled particle flows. Gopinath A; Hagan MF; Marchetti MC; Baskaran A Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jun; 85(6 Pt 1):061903. PubMed ID: 23005123 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]