These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 24275442)

  • 1. A high throughput mechanical screening device for cartilage tissue engineering.
    Mohanraj B; Hou C; Meloni GR; Cosgrove BD; Dodge GR; Mauck RL
    J Biomech; 2014 Jun; 47(9):2130-6. PubMed ID: 24275442
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Systematic Review and Guide to Mechanical Testing for Articular Cartilage Tissue Engineering.
    Patel JM; Wise BC; Bonnevie ED; Mauck RL
    Tissue Eng Part C Methods; 2019 Oct; 25(10):593-608. PubMed ID: 31288616
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The design and development of a high-throughput magneto-mechanostimulation device for cartilage tissue engineering.
    Brady MA; Vaze R; Amin HD; Overby DR; Ethier CR
    Tissue Eng Part C Methods; 2014 Feb; 20(2):149-59. PubMed ID: 23721097
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanically stimulated osteochondral organ culture for evaluation of biomaterials in cartilage repair studies.
    Vainieri ML; Wahl D; Alini M; van Osch GJVM; Grad S
    Acta Biomater; 2018 Nov; 81():256-266. PubMed ID: 30273741
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A high-throughput model of post-traumatic osteoarthritis using engineered cartilage tissue analogs.
    Mohanraj B; Meloni GR; Mauck RL; Dodge GR
    Osteoarthritis Cartilage; 2014 Sep; 22(9):1282-90. PubMed ID: 24999113
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design and validation of a compressive tissue stimulator with high-throughput capacity and real-time modulus measurement capability.
    Salvetti DJ; Pino CJ; Manuel SG; Dallmeyer I; Rangarajan SV; Meyer T; Kotov M; Shastri VP
    Tissue Eng Part C Methods; 2012 Mar; 18(3):205-14. PubMed ID: 21988089
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechano-active scaffold design based on microporous poly(L-lactide-co-epsilon-caprolactone) for articular cartilage tissue engineering: dependence of porosity on compression force-applied mechanical behaviors.
    Xie J; Ihara M; Jung Y; Kwon IK; Kim SH; Kim YH; Matsuda T
    Tissue Eng; 2006 Mar; 12(3):449-58. PubMed ID: 16579678
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A biomimetic three-dimensional woven composite scaffold for functional tissue engineering of cartilage.
    Moutos FT; Freed LE; Guilak F
    Nat Mater; 2007 Feb; 6(2):162-7. PubMed ID: 17237789
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanical testing of hydrogels in cartilage tissue engineering: beyond the compressive modulus.
    Xiao Y; Friis EA; Gehrke SH; Detamore MS
    Tissue Eng Part B Rev; 2013 Oct; 19(5):403-12. PubMed ID: 23448091
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional properties of cell-seeded three-dimensionally woven poly(epsilon-caprolactone) scaffolds for cartilage tissue engineering.
    Moutos FT; Guilak F
    Tissue Eng Part A; 2010 Apr; 16(4):1291-301. PubMed ID: 19903085
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cartilage tissue engineering: From biomaterials and stem cells to osteoarthritis treatments.
    Vinatier C; Guicheux J
    Ann Phys Rehabil Med; 2016 Jun; 59(3):139-144. PubMed ID: 27079583
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional tissue engineering of chondral and osteochondral constructs.
    Lima EG; Mauck RL; Han SH; Park S; Ng KW; Ateshian GA; Hung CT
    Biorheology; 2004; 41(3-4):577-90. PubMed ID: 15299288
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A High-Throughput Mechanical Activator for Cartilage Engineering Enables Rapid Screening of in vitro Response of Tissue Models to Physiological and Supra-Physiological Loads.
    Capuana E; Marino D; Di Gesù R; La Carrubba V; Brucato V; Tuan RS; Gottardi R
    Cells Tissues Organs; 2022; 211(6):670-688. PubMed ID: 34261061
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanical Testing of Cartilage Constructs.
    Olvera D; Daly A; Kelly DJ
    Methods Mol Biol; 2015; 1340():279-87. PubMed ID: 26445846
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Marine origin materials on biomaterials and advanced therapies to cartilage tissue engineering and regenerative medicine.
    Carvalho DN; Reis RL; Silva TH
    Biomater Sci; 2021 Oct; 9(20):6718-6736. PubMed ID: 34494053
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biomechanical issues of tissue-engineered constructs for articular cartilage regeneration: in vitro and in vivo approaches.
    Cipollaro L; Ciardulli MC; Della Porta G; Peretti GM; Maffulli N
    Br Med Bull; 2019 Dec; 132(1):53-80. PubMed ID: 31854445
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Micrometer scale guidance of mesenchymal stem cells to form structurally oriented large-scale tissue engineered cartilage.
    Chou CL; Rivera AL; Williams V; Welter JF; Mansour JM; Drazba JA; Sakai T; Baskaran H
    Acta Biomater; 2017 Sep; 60():210-219. PubMed ID: 28709984
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Time-dependent functional maturation of scaffold-free cartilage tissue analogs.
    Mohanraj B; Farran AJ; Mauck RL; Dodge GR
    J Biomech; 2014 Jun; 47(9):2137-42. PubMed ID: 24262848
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Repopulation of decellularised articular cartilage by laser-based matrix engraving.
    Nürnberger S; Schneider C; Keibl C; Schädl B; Heimel P; Monforte X; Teuschl AH; Nalbach M; Thurner PJ; Grillari J; Redl H; Wolbank S
    EBioMedicine; 2021 Feb; 64():103196. PubMed ID: 33483297
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Strategies for improving the repair of focal cartilage defects.
    Abdel-Sayed P; Pioletti DP
    Nanomedicine (Lond); 2015; 10(18):2893-905. PubMed ID: 26377158
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.