These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
101 related articles for article (PubMed ID: 24275521)
1. Phylogenetic analysis reveals conservation and diversification of micro RNA166 genes among diverse plant species. Barik S; SarkarDas S; Singh A; Gautam V; Kumar P; Majee M; Sarkar AK Genomics; 2014 Jan; 103(1):114-21. PubMed ID: 24275521 [TBL] [Abstract][Full Text] [Related]
2. Conservation and diversification of the miR166 family in soybean and potential roles of newly identified miR166s. Li X; Xie X; Li J; Cui Y; Hou Y; Zhai L; Wang X; Fu Y; Liu R; Bian S BMC Plant Biol; 2017 Feb; 17(1):32. PubMed ID: 28143404 [TBL] [Abstract][Full Text] [Related]
3. Comparative analysis of the SBP-box gene families in P. patens and seed plants. Riese M; Höhmann S; Saedler H; Münster T; Huijser P Gene; 2007 Oct; 401(1-2):28-37. PubMed ID: 17689888 [TBL] [Abstract][Full Text] [Related]
4. Significant sequence similarities in promoters and precursors of Arabidopsis thaliana non-conserved microRNAs. Wang Y; Hindemitt T; Mayer KF Bioinformatics; 2006 Nov; 22(21):2585-9. PubMed ID: 16901935 [TBL] [Abstract][Full Text] [Related]
5. Isolation and expression analysis of four HD-ZIP III family genes targeted by microRNA166 in peach. Zhang CH; Zhang BB; Ma RJ; Yu ML; Guo SL; Guo L Genet Mol Res; 2015 Oct; 14(4):14151-61. PubMed ID: 26535732 [TBL] [Abstract][Full Text] [Related]
6. Identification and co-evolution pattern of stem cell regulator miR394s and their targets among diverse plant species. Kumar A; Gautam V; Kumar P; Mukherjee S; Verma S; Sarkar AK BMC Evol Biol; 2019 Feb; 19(1):55. PubMed ID: 30764768 [TBL] [Abstract][Full Text] [Related]
7. A novel gene family in moss (Physcomitrella patens) shows sequence homology and a phylogenetic relationship with the TIR-NBS class of plant disease resistance genes. Akita M; Valkonen JP J Mol Evol; 2002 Nov; 55(5):595-605. PubMed ID: 12399933 [TBL] [Abstract][Full Text] [Related]
8. Detection of 91 potential conserved plant microRNAs in Arabidopsis thaliana and Oryza sativa identifies important target genes. Bonnet E; Wuyts J; Rouzé P; Van de Peer Y Proc Natl Acad Sci U S A; 2004 Aug; 101(31):11511-6. PubMed ID: 15272084 [TBL] [Abstract][Full Text] [Related]
9. Comparative analysis of the MIR319a microRNA locus in Arabidopsis and related Brassicaceae. Warthmann N; Das S; Lanz C; Weigel D Mol Biol Evol; 2008 May; 25(5):892-902. PubMed ID: 18296705 [TBL] [Abstract][Full Text] [Related]
10. Selection and mutation on microRNA target sequences during rice evolution. Guo X; Gui Y; Wang Y; Zhu QH; Helliwell C; Fan L BMC Genomics; 2008 Oct; 9():454. PubMed ID: 18831738 [TBL] [Abstract][Full Text] [Related]
11. Conservation and Diversity of miR166 Family Members From Highbush Blueberry ( Li Y; Wang X; Guo Q; Zhang X; Zhou L; Zhang Y; Zhang C Front Genet; 2022; 13():919856. PubMed ID: 35651935 [TBL] [Abstract][Full Text] [Related]
12. Characterization on the conservation and diversification of miRNA156 gene family from lower to higher plant species based on phylogenetic analysis at the whole genomic level. Wang C; Wang Q; Zhu X; Cui M; Jia H; Zhang W; Tang W; Leng X; Shen W Funct Integr Genomics; 2019 Nov; 19(6):933-952. PubMed ID: 31172301 [TBL] [Abstract][Full Text] [Related]
13. Unique genes in plants: specificities and conserved features throughout evolution. Armisén D; Lecharny A; Aubourg S BMC Evol Biol; 2008 Oct; 8():280. PubMed ID: 18847470 [TBL] [Abstract][Full Text] [Related]
14. On the expansion of the pentatricopeptide repeat gene family in plants. O'Toole N; Hattori M; Andres C; Iida K; Lurin C; Schmitz-Linneweber C; Sugita M; Small I Mol Biol Evol; 2008 Jun; 25(6):1120-8. PubMed ID: 18343892 [TBL] [Abstract][Full Text] [Related]
15. Coevolution Pattern and Functional Conservation or Divergence of miR167s and their targets across Diverse Plant Species. Barik S; Kumar A; Sarkar Das S; Yadav S; Gautam V; Singh A; Singh S; Sarkar AK Sci Rep; 2015 Oct; 5():14611. PubMed ID: 26459056 [TBL] [Abstract][Full Text] [Related]
16. Genome-wide analysis of heat shock transcription factor families in rice and Arabidopsis. Guo J; Wu J; Ji Q; Wang C; Luo L; Yuan Y; Wang Y; Wang J J Genet Genomics; 2008 Feb; 35(2):105-18. PubMed ID: 18407058 [TBL] [Abstract][Full Text] [Related]
17. Rapid diversification of five Oryza AA genomes associated with rice adaptation. Zhang QJ; Zhu T; Xia EH; Shi C; Liu YL; Zhang Y; Liu Y; Jiang WK; Zhao YJ; Mao SY; Zhang LP; Huang H; Jiao JY; Xu PZ; Yao QY; Zeng FC; Yang LL; Gao J; Tao DY; Wang YJ; Bennetzen JL; Gao LZ Proc Natl Acad Sci U S A; 2014 Nov; 111(46):E4954-62. PubMed ID: 25368197 [TBL] [Abstract][Full Text] [Related]
18. Small auxin upregulated RNA (SAUR) gene family in maize: identification, evolution, and its phylogenetic comparison with Arabidopsis, rice, and sorghum. Chen Y; Hao X; Cao J J Integr Plant Biol; 2014 Feb; 56(2):133-50. PubMed ID: 24472286 [TBL] [Abstract][Full Text] [Related]
19. Discovery of Conservation and Diversification of miR171 Genes by Phylogenetic Analysis based on Global Genomes. Zhu X; Leng X; Sun X; Mu Q; Wang B; Li X; Wang C; Fang J Plant Genome; 2015 Jul; 8(2):eplantgenome2014.10.0076. PubMed ID: 33228325 [TBL] [Abstract][Full Text] [Related]
20. Computational detection of microRNAs targeting transcription factor genes in Arabidopsis thaliana. Li X; Zhang YZ Comput Biol Chem; 2005 Oct; 29(5):360-7. PubMed ID: 16221572 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]