BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

315 related articles for article (PubMed ID: 24276259)

  • 1. Database-Guided Discovery of Potent Peptides to Combat HIV-1 or Superbugs.
    Wang G
    Pharmaceuticals (Basel); 2013 May; 6(6):728-58. PubMed ID: 24276259
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improved methods for classification, prediction, and design of antimicrobial peptides.
    Wang G
    Methods Mol Biol; 2015; 1268():43-66. PubMed ID: 25555720
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ab initio design of potent anti-MRSA peptides based on database filtering technology.
    Mishra B; Wang G
    J Am Chem Soc; 2012 Aug; 134(30):12426-9. PubMed ID: 22803960
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unifying the classification of antimicrobial peptides in the antimicrobial peptide database.
    Wang G
    Methods Enzymol; 2022; 663():1-18. PubMed ID: 35168785
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Human antimicrobial peptides and proteins.
    Wang G
    Pharmaceuticals (Basel); 2014 May; 7(5):545-94. PubMed ID: 24828484
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrophobic diversification is the key to simultaneously increased antifungal activity and decreased cytotoxicity of two ab initio designed peptides.
    Decker AP; Mechesso AF; Zhou Y; Xu C; Wang G
    Peptides; 2022 Dec; 158():170880. PubMed ID: 36167253
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spotlight on the Selected New Antimicrobial Innate Immune Peptides Discovered During 2015-2019.
    Dang X; Wang G
    Curr Top Med Chem; 2020; 20(32):2984-2998. PubMed ID: 33092508
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design of short membrane selective antimicrobial peptides containing tryptophan and arginine residues for improved activity, salt-resistance, and biocompatibility.
    Saravanan R; Li X; Lim K; Mohanram H; Peng L; Mishra B; Basu A; Lee JM; Bhattacharjya S; Leong SS
    Biotechnol Bioeng; 2014 Jan; 111(1):37-49. PubMed ID: 23860860
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design, Synthesis, and Evaluation of Amphiphilic Cyclic and Linear Peptides Composed of Hydrophobic and Positively-Charged Amino Acids as Antibacterial Agents.
    Riahifard N; Mozaffari S; Aldakhil T; Nunez F; Alshammari Q; Alshammari S; Yamaki J; Parang K; Tiwari RK
    Molecules; 2018 Oct; 23(10):. PubMed ID: 30360400
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bioinformatic Analysis of 1000 Amphibian Antimicrobial Peptides Uncovers Multiple Length-Dependent Correlations for Peptide Design and Prediction.
    Wang G
    Antibiotics (Basel); 2020 Aug; 9(8):. PubMed ID: 32784626
    [TBL] [Abstract][Full Text] [Related]  

  • 11. APD3: the antimicrobial peptide database as a tool for research and education.
    Wang G; Li X; Wang Z
    Nucleic Acids Res; 2016 Jan; 44(D1):D1087-93. PubMed ID: 26602694
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inhibition of methicillin-resistant Staphylococcus aureus (MRSA) by antimicrobial peptides (AMPs) and plant essential oils.
    Zouhir A; Jridi T; Nefzi A; Ben Hamida J; Sebei K
    Pharm Biol; 2016 Dec; 54(12):3136-3150. PubMed ID: 27246787
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Natural antimicrobial peptides as promising anti-HIV candidates.
    Wang G
    Curr Top Pept Protein Res; 2012; 13():93-110. PubMed ID: 26834391
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of Antimicrobial Peptides of the Innate Immune System in Combination With Conventional Antibiotics-A Novel Way to Combat Antibiotic Resistance?
    Zharkova MS; Orlov DS; Golubeva OY; Chakchir OB; Eliseev IE; Grinchuk TM; Shamova OV
    Front Cell Infect Microbiol; 2019; 9():128. PubMed ID: 31114762
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ANTISTAPHYBASE: database of antimicrobial peptides (AMPs) and essential oils (EOs) against methicillin-resistant Staphylococcus aureus (MRSA) and Staphylococcus aureus.
    Zouhir A; Taieb M; Lamine MA; Cherif A; Jridi T; Mahjoubi B; Mbarek S; Fliss I; Nefzi A; Sebei K; Ben Hamida J
    Arch Microbiol; 2017 Mar; 199(2):215-222. PubMed ID: 27671474
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Selective phenylalanine to proline substitution for improved antimicrobial and anticancer activities of peptides designed on phenylalanine heptad repeat.
    Tripathi AK; Kumari T; Tandon A; Sayeed M; Afshan T; Kathuria M; Shukla PK; Mitra K; Ghosh JK
    Acta Biomater; 2017 Jul; 57():170-186. PubMed ID: 28483698
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of Human Host Defense Antimicrobial Peptide-Conjugated Biochar Nanocomposites for Combating Broad-Spectrum Superbugs.
    Gao Y; Pramanik A; Patibandla S; Gates K; Hill G; Ignatius A; Ray PC
    ACS Appl Bio Mater; 2020 Nov; 3(11):7696-7705. PubMed ID: 35019509
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Highly Potent Antibacterial Organometallic Peptide Conjugates.
    Albada B; Metzler-Nolte N
    Acc Chem Res; 2017 Oct; 50(10):2510-2518. PubMed ID: 28953347
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sequence Permutation Generates Peptides with Different Antimicrobial and Antibiofilm Activities.
    Mishra B; Lakshmaiah Narayana J; Lushnikova T; Zhang Y; Golla RM; Zarena D; Wang G
    Pharmaceuticals (Basel); 2020 Sep; 13(10):. PubMed ID: 32992772
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CalcAMP: A New Machine Learning Model for the Accurate Prediction of Antimicrobial Activity of Peptides.
    Bournez C; Riool M; de Boer L; Cordfunke RA; de Best L; van Leeuwen R; Drijfhout JW; Zaat SAJ; van Westen GJP
    Antibiotics (Basel); 2023 Apr; 12(4):. PubMed ID: 37107088
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.