These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 24276671)
41. Efficient gene delivery targeted to the brain using a transferrin-conjugated polyethyleneglycol-modified polyamidoamine dendrimer. Huang RQ; Qu YH; Ke WL; Zhu JH; Pei YY; Jiang C FASEB J; 2007 Apr; 21(4):1117-25. PubMed ID: 17218540 [TBL] [Abstract][Full Text] [Related]
42. Conjugation of steroids with PAMAM nanoparticles. Chanphai P; Bekale L; Tajmir-Riahi HA Colloids Surf B Biointerfaces; 2015 Dec; 136():1035-41. PubMed ID: 26590896 [TBL] [Abstract][Full Text] [Related]
43. Low systemic toxicity nanocarriers fabricated from heparin-mPEG and PAMAM dendrimers for controlled drug release. Thanh VM; Nguyen TH; Tran TV; Ngoc UP; Ho MN; Nguyen TT; Chau YNT; Le VT; Tran NQ; Nguyen CK; Nguyen DH Mater Sci Eng C Mater Biol Appl; 2018 Jan; 82():291-298. PubMed ID: 29025661 [TBL] [Abstract][Full Text] [Related]
44. Fabrication, characterization and in vitro evaluation of poly(D,L-lactide-co-glycolide) microparticles loaded with polyamidoamine-plasmid DNA dendriplexes for applications in nonviral gene delivery. Intra J; Salem AK J Pharm Sci; 2010 Jan; 99(1):368-84. PubMed ID: 19670295 [TBL] [Abstract][Full Text] [Related]
45. PAMAM-modified citric acid-coated magnetic nanoparticles as pH sensitive biocompatible carrier against human breast cancer cells. Nosrati H; Adibtabar M; Sharafi A; Danafar H; Hamidreza Kheiri M Drug Dev Ind Pharm; 2018 Aug; 44(8):1377-1384. PubMed ID: 29560737 [TBL] [Abstract][Full Text] [Related]
46. Cellular uptake of glucoheptoamidated poly(amidoamine) PAMAM G3 dendrimer with amide-conjugated biotin, a potential carrier of anticancer drugs. Uram Ł; Szuster M; Filipowicz A; Zaręba M; Wałajtys-Rode E; Wołowiec S Bioorg Med Chem; 2017 Jan; 25(2):706-713. PubMed ID: 27919613 [TBL] [Abstract][Full Text] [Related]
47. PAMAM Dendrimer/pDNA Functionalized-Magnetic Iron Oxide Nanoparticles for Gene Delivery. Xiao S; Castro R; Rodrigues J; Shi X; Tomás H J Biomed Nanotechnol; 2015 Aug; 11(8):1370-84. PubMed ID: 26295139 [TBL] [Abstract][Full Text] [Related]
48. Synthesis, biodistribution, and imaging of PEGylated-acetylated polyamidoamine dendrimers. Liu J; Liu J; Chu L; Tong L; Gao H; Yang C; Wang D; Shi L; Kong D; Li Z J Nanosci Nanotechnol; 2014 May; 14(5):3305-12. PubMed ID: 24734545 [TBL] [Abstract][Full Text] [Related]
49. The influence of female mice age on biodistribution and biocompatibility of citrate-coated magnetic nanoparticles. Pinheiro WO; Fascineli ML; Farias GR; Horst FH; de Andrade LR; Corrêa LH; Magalhães KG; Sousa MH; de Almeida MC; Azevedo RB; Lacava ZGM Int J Nanomedicine; 2019; 14():3375-3388. PubMed ID: 31123402 [TBL] [Abstract][Full Text] [Related]
50. Polyamidoamine dendrimer conjugated chitosan nanoparticles for the delivery of methotrexate. Leng ZH; Zhuang QF; Li YC; He Z; Chen Z; Huang SP; Jia HY; Zhou JW; Liu Y; Du LB Carbohydr Polym; 2013 Oct; 98(1):1173-8. PubMed ID: 23987460 [TBL] [Abstract][Full Text] [Related]
51. Binding analysis of antioxidant polyphenols with PAMAM nanoparticles. Chanphai P; Tajmir-Riahi HA J Biomol Struct Dyn; 2018 Oct; 36(13):3487-3495. PubMed ID: 29019428 [TBL] [Abstract][Full Text] [Related]
52. Protein conjugation with PAMAM nanoparticles: Microscopic and thermodynamic analysis. Chanphai P; Froehlich E; Mandeville JS; Tajmir-Riahi HA Colloids Surf B Biointerfaces; 2017 Feb; 150():168-174. PubMed ID: 27914253 [TBL] [Abstract][Full Text] [Related]
53. Multifunctionalized CMCht/PAMAM dendrimer nanoparticles modulate the cellular uptake by astrocytes and oligodendrocytes in primary cultures of glial cells. Cerqueira SR; Silva BL; Oliveira JM; Mano JF; Sousa N; Salgado AJ; Reis RL Macromol Biosci; 2012 May; 12(5):591-7. PubMed ID: 22411735 [TBL] [Abstract][Full Text] [Related]
54. Efficient preparation and labeling of human induced pluripotent stem cells by nanotechnology. Ruan J; Shen J; Wang Z; Ji J; Song H; Wang K; Liu B; Li J; Cui D Int J Nanomedicine; 2011; 6():425-35. PubMed ID: 21499432 [TBL] [Abstract][Full Text] [Related]
55. Enhanced biocompatibility of PAMAM dendrimers benefiting from tuning their surface charges. Cui Y; Liang B; Wang L; Zhu L; Kang J; Sun H; Chen S Mater Sci Eng C Mater Biol Appl; 2018 Dec; 93():332-340. PubMed ID: 30274065 [TBL] [Abstract][Full Text] [Related]
56. Synthesis of fluorescent dendrimers with aggregation-induced emission features through a one-pot multi-component reaction and their utilization for biological imaging. Luo W; Jiang R; Liu M; Wan Q; Tian J; Wen Y; Cao QY; Hui J; Zhang X; Wei Y J Colloid Interface Sci; 2018 Jan; 509():327-333. PubMed ID: 28918375 [TBL] [Abstract][Full Text] [Related]
57. Targeting human liver cancer cells with lactobionic acid-G(4)-PAMAM-FITC sorafenib loaded dendrimers. Iacobazzi RM; Porcelli L; Lopedota AA; Laquintana V; Lopalco A; Cutrignelli A; Altamura E; Di Fonte R; Azzariti A; Franco M; Denora N Int J Pharm; 2017 Aug; 528(1-2):485-497. PubMed ID: 28624661 [TBL] [Abstract][Full Text] [Related]
58. Simultaneous voltammetric immunodetection of alpha-fetoprotein and glypican-3 using a glassy carbon electrode modified with magnetite-conjugated dendrimers. Chikhaliwala P; Rai R; Chandra S Mikrochim Acta; 2019 Mar; 186(4):255. PubMed ID: 30904972 [TBL] [Abstract][Full Text] [Related]
59. Protective effect of PEGylation against poly(amidoamine) dendrimer-induced hemolysis of human red blood cells. Wang W; Xiong W; Zhu Y; Xu H; Yang X J Biomed Mater Res B Appl Biomater; 2010 Apr; 93(1):59-64. PubMed ID: 20186802 [TBL] [Abstract][Full Text] [Related]
60. The interaction of dendrimer-doxorubicin conjugates with a model pulmonary epithelium and their cosolvent-free, pseudo-solution formulations in pressurized metered-dose inhalers. Zhong Q; Humia BV; Punjabi AR; Padilha FF; da Rocha SRP Eur J Pharm Sci; 2017 Nov; 109():86-95. PubMed ID: 28774811 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]