These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
208 related articles for article (PubMed ID: 24276694)
1. Chip-on-foil devices for DNA analysis based on inkjet-printed silver electrodes. Wünscher S; Seise B; Pretzel D; Pollok S; Perelaer J; Weber K; Popp J; Schubert US Lab Chip; 2014 Jan; 14(2):392-401. PubMed ID: 24276694 [TBL] [Abstract][Full Text] [Related]
2. Inkjet-Printing of Nanoparticle Gold and Silver Ink on Cyclic Olefin Copolymer for DNA-Sensing Applications. Trotter M; Juric D; Bagherian Z; Borst N; Gläser K; Meissner T; von Stetten FV; Zimmermann A Sensors (Basel); 2020 Feb; 20(5):. PubMed ID: 32121410 [TBL] [Abstract][Full Text] [Related]
3. Silver front electrode grids for ITO-free all printed polymer solar cells with embedded and raised topographies, prepared by thermal imprint, flexographic and inkjet roll-to-roll processes. Yu JS; Kim I; Kim JS; Jo J; Larsen-Olsen TT; Søndergaard RR; Hösel M; Angmo D; Jørgensen M; Krebs FC Nanoscale; 2012 Sep; 4(19):6032-40. PubMed ID: 22915093 [TBL] [Abstract][Full Text] [Related]
4. A disposable and cost efficient microfluidic device for the rapid chip-based electrical detection of DNA. Schüler T; Kretschmer R; Jessing S; Urban M; Fritzsche W; Möller R; Popp J Biosens Bioelectron; 2009 Sep; 25(1):15-21. PubMed ID: 19592230 [TBL] [Abstract][Full Text] [Related]
5. Screen printing as cost-efficient fabrication method for DNA-chips with electrical readout for detection of viral DNA. Schüler T; Asmus T; Fritzsche W; Möller R Biosens Bioelectron; 2009 Mar; 24(7):2077-84. PubMed ID: 19071012 [TBL] [Abstract][Full Text] [Related]
7. Profile control of inkjet printed silver electrodes and their application to organic transistors. Fukuda K; Sekine T; Kumaki D; Tokito S ACS Appl Mater Interfaces; 2013 May; 5(9):3916-20. PubMed ID: 23547936 [TBL] [Abstract][Full Text] [Related]
8. Preparation of solid silver nanoparticles for inkjet printed flexible electronics with high conductivity. Shen W; Zhang X; Huang Q; Xu Q; Song W Nanoscale; 2014; 6(3):1622-8. PubMed ID: 24337051 [TBL] [Abstract][Full Text] [Related]
9. Fast and low-temperature sintering of silver complex using oximes as a potential reducing agent for solution-processible, highly conductive electrodes. Yoo JH; Han DS; Park SB; Chae J; Kim JM; Kwak J Nanotechnology; 2014 Nov; 25(46):465706. PubMed ID: 25360800 [TBL] [Abstract][Full Text] [Related]
10. Low-Thermal-Budget Photonic Processing of Highly Conductive Cu Interconnects Based on CuO Nanoinks: Potential for Flexible Printed Electronics. Rager MS; Aytug T; Veith GM; Joshi P ACS Appl Mater Interfaces; 2016 Jan; 8(3):2441-8. PubMed ID: 26720684 [TBL] [Abstract][Full Text] [Related]
11. All-printed multiplexed electrocatalytic biosensors with rationally designed nanoparticle inks. Li X; Yang M; Rao A; Su Y; Yang T; Ye Y; Wang J; Pan S; Chen F; Wang B; Luo Z Nanotechnology; 2023 May; 34(32):. PubMed ID: 37156233 [TBL] [Abstract][Full Text] [Related]
12. Layer Morphology and Ink Compatibility of Silver Nanoparticle Inkjet Inks for Near-Infrared Sintering. Reenaers D; Marchal W; Biesmans I; Nivelle P; D'Haen J; Deferme W Nanomaterials (Basel); 2020 May; 10(5):. PubMed ID: 32392730 [TBL] [Abstract][Full Text] [Related]
14. Robust Design of a Particle-Free Silver-Organo-Complex Ink with High Conductivity and Inkjet Stability for Flexible Electronics. Vaseem M; McKerricher G; Shamim A ACS Appl Mater Interfaces; 2016 Jan; 8(1):177-86. PubMed ID: 26713357 [TBL] [Abstract][Full Text] [Related]
15. Silver conductive features on flexible substrates from a thermally accelerated chain reaction at low sintering temperatures. Chen SP; Kao ZK; Lin JL; Liao YC ACS Appl Mater Interfaces; 2012 Dec; 4(12):7064-8. PubMed ID: 23186160 [TBL] [Abstract][Full Text] [Related]
16. Ultrasensitive electrochemical detection for DNA arrays based on silver nanoparticle aggregates. Li H; Sun Z; Zhong W; Hao N; Xu D; Chen HY Anal Chem; 2010 Jul; 82(13):5477-83. PubMed ID: 20550213 [TBL] [Abstract][Full Text] [Related]
17. Flexible biochips for detection of biomolecules. Péter M; Schüler T; Furthner F; Rensing PA; van Heck GT; Schoo HF; Möller R; Fritzsche W; van Breemen AJ; Meinders ER Langmuir; 2009 May; 25(9):5384-90. PubMed ID: 19326940 [TBL] [Abstract][Full Text] [Related]
18. The influence of paper coating content on room temperature sintering of silver nanoparticle ink. Andersson H; Manuilskiy A; Lidenmark C; Gao J; Öhlund T; Forsberg S; Örtegren J; Schmidt W; Nilsson HE Nanotechnology; 2013 Nov; 24(45):455203. PubMed ID: 24129403 [TBL] [Abstract][Full Text] [Related]
19. Roll-to-roll embedded conductive structures integrated into organic photovoltaic devices. van de Wiel HJ; Galagan Y; van Lammeren TJ; de Riet JF; Gilot J; Nagelkerke MG; Lelieveld RH; Shanmugam S; Pagudala A; Hui D; Groen WA Nanotechnology; 2013 Dec; 24(48):484014. PubMed ID: 24196842 [TBL] [Abstract][Full Text] [Related]
20. Development of a lab-on-a-chip device for diagnosis of plant pathogens. Julich S; Riedel M; Kielpinski M; Urban M; Kretschmer R; Wagner S; Fritzsche W; Henkel T; Möller R; Werres S Biosens Bioelectron; 2011 Jun; 26(10):4070-5. PubMed ID: 21531125 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]