These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 24276704)

  • 1. Assessment of glycinebetaine and proline compartmentation by analysis of isolated beet vacuoles.
    Leigh RA; Ahmad N; Jones RG
    Planta; 1981 Oct; 153(1):34-41. PubMed ID: 24276704
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An attempt to use isolated vacuoles to determine the distribution of sodium and potassium in cells of storage roots of red beet (Beta vulgaris L.).
    Leigh RA; Tomos AD
    Planta; 1983 Nov; 159(5):469-75. PubMed ID: 24258300
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sucrose phosphatase associated with vacuole preparations from red beet, sugar beet, and immature sugarcane stem.
    Hawker JS; Smith GM; Phillips H; Wiskich JT
    Plant Physiol; 1987 Aug; 84(4):1281-5. PubMed ID: 16665598
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sucrose Phosphate Is Not Transported into Vacuoles or Tonoplast Vesicles from Red Beet (Beta vulgaris) Hypocotyl.
    Echeverria E; Salvucci ME
    Plant Physiol; 1991 Aug; 96(4):1014-7. PubMed ID: 16668291
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sucrose uptake and compartmentation in sugar beet taproot tissue.
    Saftner RA; Daie J; Wyse RE
    Plant Physiol; 1983 May; 72(1):1-6. PubMed ID: 16662941
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Isolation of Vacuoles from Root Storage Tissue of Beta vulgaris L.
    Leigh RA; Branton D
    Plant Physiol; 1976 Nov; 58(5):656-62. PubMed ID: 16659738
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Architectural remodeling of the tonoplast during fluid-phase endocytosis.
    Etxeberria E; Gonzalez P; Pozueta-Romero J
    Plant Signal Behav; 2013 Jul; 8(7):e24793. PubMed ID: 23656870
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Solute distribution in Suaeda maritima.
    Gorham J; Wyn Jones RG
    Planta; 1983 Jul; 157(4):344-9. PubMed ID: 24264268
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Solute distribution between vacuole and cytosol of sugarcane suspension cells: Sucrose is not accumulated in the vacuole.
    Preisser J; Sprügel H; Komor E
    Planta; 1992 Jan; 186(2):203-11. PubMed ID: 24186659
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characteristics of Sucrose Transport and Sucrose-Induced H+ Transport on the Tonoplast of Red Beet (Beta vulgaris L.) Storage Tissue.
    Getz HP; Klein M
    Plant Physiol; 1995 Feb; 107(2):459-467. PubMed ID: 12228372
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Immunological Evidence for the Existence of a Carrier Protein for Sucrose Transport in Tonoplast Vesicles from Red Beet (Beta vulgaris L.) Root Storage Tissue.
    Getz HP; Grosclaude J; Kurkdjian A; Lelievre F; Maretzki A; Guern J
    Plant Physiol; 1993 Jul; 102(3):751-760. PubMed ID: 12231863
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Water to Solute Permeability Ratio Governs the Osmotic Volume Dynamics in Beetroot Vacuoles.
    Vitali V; Sutka M; Amodeo G; Chara O; Ozu M
    Front Plant Sci; 2016; 7():1388. PubMed ID: 27695468
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Accumulation of sucrose in vacuoles isolated from red beet tissue.
    Doll S; Rodier F; Willenbrink J
    Planta; 1979 Jan; 144(5):407-11. PubMed ID: 24407383
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sucrose transport in tonoplast vesicles of red beet roots is linked to ATP hydrolysis.
    Getz HP
    Planta; 1991 Sep; 185(2):261-8. PubMed ID: 24186350
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of d-myo-Inositol 1,4,5-Trisphosphate on the Electrical Properties of the Red Beet Vacuole Membrane.
    Alexandre J; Lassalles JP
    Plant Physiol; 1990 Jun; 93(2):837-40. PubMed ID: 16667547
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative analyses of glutathione system of vacuoles and leucoplasts isolated from the storage parenchyma cells of dormant red beetroots (Beta vulgaris L.).
    Pradedova EV; Nimaeva OD; Rakevich AL; Salyaev RK
    Plant Physiol Biochem; 2019 Dec; 145():52-63. PubMed ID: 31665667
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evidence for the involvement of a UDP-glucose-dependent group translocator in sucrose uptake into vacuoles of storage roots of red beet.
    Thom M; Leigh RA; Maretzki A
    Planta; 1986 Mar; 167(3):410-3. PubMed ID: 24240312
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ATPase and acid phosphatase activities associated with vacuoles isolated from storage roots of red beet (Beta vulgaris L.).
    Leigh RA; Walker RR
    Planta; 1980 Nov; 150(3):222-9. PubMed ID: 24306686
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterisation of a salt-stimulated ATPase activity associated with vacuoles isolated from storage roots of red beet (Beta vulgaris L.).
    Walker RR; Leigh RA
    Planta; 1981 Oct; 153(2):140-9. PubMed ID: 24276764
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cation-permeable vacuolar ion channels in the moss Physcomitrella patens: a patch-clamp study.
    Koselski M; Trebacz K; Dziubinska H
    Planta; 2013 Aug; 238(2):357-67. PubMed ID: 23716185
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.