These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
168 related articles for article (PubMed ID: 24276722)
1. A biophysically based finite-state machine model for analyzing gastric experimental entrainment and pacing recordings. Sathar S; Trew ML; Du P; O'Grady G; Cheng LK Ann Biomed Eng; 2014 Apr; 42(4):858-70. PubMed ID: 24276722 [TBL] [Abstract][Full Text] [Related]
2. A simplified biophysical cell model for gastric slow wave entrainment simulation. Du P; Gao J; O'Grady G; Cheng LK Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():6547-50. PubMed ID: 24111242 [TBL] [Abstract][Full Text] [Related]
3. Three-dimensional multi-field modelling of gastric arrhythmias and their effects on antral contractions. Klemm L; Seydewitz R; Siebert T; Böl M Comput Biol Med; 2023 Feb; 153():106488. PubMed ID: 36592609 [TBL] [Abstract][Full Text] [Related]
4. A model of slow wave propagation and entrainment along the stomach. Buist ML; Corrias A; Poh YC Ann Biomed Eng; 2010 Sep; 38(9):3022-30. PubMed ID: 20437204 [TBL] [Abstract][Full Text] [Related]
5. Relationships between gastric slow wave frequency, velocity, and extracellular amplitude studied by a joint experimental-theoretical approach. Wang TH; Du P; Angeli TR; Paskaranandavadivel N; Erickson JC; Abell TL; Cheng LK; O'Grady G Neurogastroenterol Motil; 2018 Jan; 30(1):. PubMed ID: 28695661 [TBL] [Abstract][Full Text] [Related]
6. Targeted ablation of gastric pacemaker sites to modulate patterns of bioelectrical slow wave activation and propagation in an anesthetized pig model. Aghababaie Z; Cheng LK; Paskaranandavadivel N; Avci R; Chan CA; Matthee A; Amirapu S; Asirvatham SJ; Farrugia G; Beyder A; O'Grady G; Angeli-Gordon TR Am J Physiol Gastrointest Liver Physiol; 2022 Apr; 322(4):G431-G445. PubMed ID: 35137624 [TBL] [Abstract][Full Text] [Related]
7. Engaging biological oscillators through second messenger pathways permits emergence of a robust gastric slow-wave during peristalsis. Ahmed MA; Venugopal S; Jung R PLoS Comput Biol; 2021 Dec; 17(12):e1009644. PubMed ID: 34871315 [TBL] [Abstract][Full Text] [Related]
8. A framework for the design of a closed-loop gastric pacemaker for treating conduction block. Wang L; Malik A; Roop PS; Cheng LK; Paskaranandavadivel N Comput Methods Programs Biomed; 2022 Apr; 216():106652. PubMed ID: 35124479 [TBL] [Abstract][Full Text] [Related]
9. A tissue framework for simulating the effects of gastric electrical stimulation and in vivo validation. Du P; O'Grady G; Windsor JA; Cheng LK; Pullan AJ IEEE Trans Biomed Eng; 2009 Dec; 56(12):2755-61. PubMed ID: 19643697 [TBL] [Abstract][Full Text] [Related]
11. A Multiscale Tridomain Model for Simulating Bioelectric Gastric Pacing. Sathar S; Trew ML; OGrady G; Cheng LK IEEE Trans Biomed Eng; 2015 Nov; 62(11):2685-92. PubMed ID: 26080372 [TBL] [Abstract][Full Text] [Related]
12. Effects of surface gastric pacing on gastric myoelectrical activity and plasma motilin in a canine model of gastric motility disorders. Yang M; Fang DC; Wang RQ; Yang SM; Long QL; Li QW; Sun NX; Gan L Chin J Dig Dis; 2004; 5(2):56-63. PubMed ID: 15612658 [TBL] [Abstract][Full Text] [Related]
13. The impact of surgical excisions on human gastric slow wave conduction, defined by high-resolution electrical mapping and in silico modeling. Du P; Hameed A; Angeli TR; Lahr C; Abell TL; Cheng LK; O'Grady G Neurogastroenterol Motil; 2015 Oct; 27(10):1409-22. PubMed ID: 26251163 [TBL] [Abstract][Full Text] [Related]
14. The influence of interstitial cells of Cajal loss and aging on slow wave conduction velocity in the human stomach. Wang TH; Angeli TR; Ishida S; Du P; Gharibans A; Paskaranandavadivel N; Imai Y; Miyagawa T; Abell TL; Farrugia G; Cheng LK; O'Grady G Physiol Rep; 2021 Jan; 8(24):e14659. PubMed ID: 33355992 [TBL] [Abstract][Full Text] [Related]
15. High-resolution entrainment mapping of gastric pacing: a new analytical tool. O'Grady G; Du P; Lammers WJ; Egbuji JU; Mithraratne P; Chen JD; Cheng LK; Windsor JA; Pullan AJ Am J Physiol Gastrointest Liver Physiol; 2010 Feb; 298(2):G314-21. PubMed ID: 19926815 [TBL] [Abstract][Full Text] [Related]
16. Tissue-specific mathematical models of slow wave entrainment in wild-type and 5-HT(2B) knockout mice with altered interstitial cells of Cajal networks. Du P; O'Grady G; Gibbons SJ; Yassi R; Lees-Green R; Farrugia G; Cheng LK; Pullan AJ Biophys J; 2010 May; 98(9):1772-81. PubMed ID: 20441740 [TBL] [Abstract][Full Text] [Related]
17. Generation and propagation of gastric slow waves. van Helden DF; Laver DR; Holdsworth J; Imtiaz MS Clin Exp Pharmacol Physiol; 2010 Apr; 37(4):516-24. PubMed ID: 19930430 [TBL] [Abstract][Full Text] [Related]
18. Pacing of interstitial cells of Cajal in the murine gastric antrum: neurally mediated and direct stimulation. Beckett EA; McGeough CA; Sanders KM; Ward SM J Physiol; 2003 Dec; 553(Pt 2):545-59. PubMed ID: 14500772 [TBL] [Abstract][Full Text] [Related]