BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 24277076)

  • 1. The Spiegelmer NOX-A12, a novel CXCL12 inhibitor, interferes with chronic lymphocytic leukemia cell motility and causes chemosensitization.
    Hoellenriegel J; Zboralski D; Maasch C; Rosin NY; Wierda WG; Keating MJ; Kruschinski A; Burger JA
    Blood; 2014 Feb; 123(7):1032-9. PubMed ID: 24277076
    [TBL] [Abstract][Full Text] [Related]  

  • 2. NOX-A12: mobilizing CLL away from home.
    Marasca R; Maffei R
    Blood; 2014 Feb; 123(7):952-3. PubMed ID: 24526776
    [No Abstract]   [Full Text] [Related]  

  • 3. CXCL12/SDF-1-Dependent Retinal Migration of Endogenous Bone Marrow-Derived Stem Cells Improves Visual Function after Pharmacologically Induced Retinal Degeneration.
    Enzmann V; Lecaudé S; Kruschinski A; Vater A
    Stem Cell Rev Rep; 2017 Apr; 13(2):278-286. PubMed ID: 27924617
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Small peptide inhibitors of the CXCR4 chemokine receptor (CD184) antagonize the activation, migration, and antiapoptotic responses of CXCL12 in chronic lymphocytic leukemia B cells.
    Burger M; Hartmann T; Krome M; Rawluk J; Tamamura H; Fujii N; Kipps TJ; Burger JA
    Blood; 2005 Sep; 106(5):1824-30. PubMed ID: 15905192
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CXCL12 and CXCR7 are relevant targets to reverse cell adhesion-mediated drug resistance in multiple myeloma.
    Waldschmidt JM; Simon A; Wider D; Müller SJ; Follo M; Ihorst G; Decker S; Lorenz J; Chatterjee M; Azab AK; Duyster J; Wäsch R; Engelhardt M
    Br J Haematol; 2017 Oct; 179(1):36-49. PubMed ID: 28670693
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Increasing Tumor-Infiltrating T Cells through Inhibition of CXCL12 with NOX-A12 Synergizes with PD-1 Blockade.
    Zboralski D; Hoehlig K; Eulberg D; Frömming A; Vater A
    Cancer Immunol Res; 2017 Nov; 5(11):950-956. PubMed ID: 28963140
    [TBL] [Abstract][Full Text] [Related]  

  • 7. AMD3100 disrupts the cross-talk between chronic lymphocytic leukemia cells and a mesenchymal stromal or nurse-like cell-based microenvironment: pre-clinical evidence for its association with chronic lymphocytic leukemia treatments.
    Stamatopoulos B; Meuleman N; De Bruyn C; Pieters K; Mineur P; Le Roy C; Saint-Georges S; Varin-Blank N; Cymbalista F; Bron D; Lagneaux L
    Haematologica; 2012 Apr; 97(4):608-15. PubMed ID: 22058221
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CXCL12-induced VLA-4 activation is impaired in trisomy 12 chronic lymphocytic leukemia cells: a role for CCL21.
    Ganghammer S; Hutterer E; Hinterseer E; Brachtl G; Asslaber D; Krenn PW; Girbl T; Berghammer P; Geisberger R; Egle A; Zucchetto A; Kruschinski A; Gattei V; Chigaev A; Greil R; Hartmann TN
    Oncotarget; 2015 May; 6(14):12048-60. PubMed ID: 25895128
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Targeting the CXCR4 pathway using a novel anti-CXCR4 IgG1 antibody (PF-06747143) in chronic lymphocytic leukemia.
    Kashyap MK; Amaya-Chanaga CI; Kumar D; Simmons B; Huser N; Gu Y; Hallin M; Lindquist K; Yafawi R; Choi MY; Amine AA; Rassenti LZ; Zhang C; Liu SH; Smeal T; Fantin VR; Kipps TJ; Pernasetti F; Castro JE
    J Hematol Oncol; 2017 May; 10(1):112. PubMed ID: 28526063
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Olaptesed pegol (NOX-A12) with bendamustine and rituximab: a phase IIa study in patients with relapsed/refractory chronic lymphocytic leukemia.
    Steurer M; Montillo M; Scarfò L; Mauro FR; Andel J; Wildner S; Trentin L; Janssens A; Burgstaller S; Frömming A; Dümmler T; Riecke K; Baumann M; Beyer D; Vauléon S; Ghia P; Foà R; Caligaris-Cappio F; Gobbi M
    Haematologica; 2019 Oct; 104(10):2053-2060. PubMed ID: 31097627
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ulocuplumab (BMS-936564 / MDX1338): a fully human anti-CXCR4 antibody induces cell death in chronic lymphocytic leukemia mediated through a reactive oxygen species-dependent pathway.
    Kashyap MK; Kumar D; Jones H; Amaya-Chanaga CI; Choi MY; Melo-Cardenas J; Ale-Ali A; Kuhne MR; Sabbatini P; Cohen LJ; Shelat SG; Rassenti LZ; Kipps TJ; Cardarelli PM; Castro JE
    Oncotarget; 2016 Jan; 7(3):2809-22. PubMed ID: 26646452
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The phosphoinositide 3'-kinase delta inhibitor, CAL-101, inhibits B-cell receptor signaling and chemokine networks in chronic lymphocytic leukemia.
    Hoellenriegel J; Meadows SA; Sivina M; Wierda WG; Kantarjian H; Keating MJ; Giese N; O'Brien S; Yu A; Miller LL; Lannutti BJ; Burger JA
    Blood; 2011 Sep; 118(13):3603-12. PubMed ID: 21803855
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Isoform-selective phosphoinositide 3'-kinase inhibitors inhibit CXCR4 signaling and overcome stromal cell-mediated drug resistance in chronic lymphocytic leukemia: a novel therapeutic approach.
    Niedermeier M; Hennessy BT; Knight ZA; Henneberg M; Hu J; Kurtova AV; Wierda WG; Keating MJ; Shokat KM; Burger JA
    Blood; 2009 May; 113(22):5549-57. PubMed ID: 19318683
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Overexpression of the chemokine receptor CXCR4 in B cell chronic lymphocytic leukemia is associated with increased functional response to stromal cell-derived factor-1 (SDF-1).
    Möhle R; Failenschmid C; Bautz F; Kanz L
    Leukemia; 1999 Dec; 13(12):1954-9. PubMed ID: 10602415
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhibition of BCR signaling using the Syk inhibitor TAK-659 prevents stroma-mediated signaling in chronic lymphocytic leukemia cells.
    Purroy N; Carabia J; Abrisqueta P; Egia L; Aguiló M; Carpio C; Palacio C; Crespo M; Bosch F
    Oncotarget; 2017 Jan; 8(1):742-756. PubMed ID: 27888629
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tiam1/Rac1 signals contribute to the proliferation and chemoresistance, but not motility, of chronic lymphocytic leukemia cells.
    Hofbauer SW; Krenn PW; Ganghammer S; Asslaber D; Pichler U; Oberascher K; Henschler R; Wallner M; Kerschbaum H; Greil R; Hartmann TN
    Blood; 2014 Apr; 123(14):2181-8. PubMed ID: 24501217
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spleen tyrosine kinase inhibition prevents chemokine- and integrin-mediated stromal protective effects in chronic lymphocytic leukemia.
    Buchner M; Baer C; Prinz G; Dierks C; Burger M; Zenz T; Stilgenbauer S; Jumaa H; Veelken H; Zirlik K
    Blood; 2010 Jun; 115(22):4497-506. PubMed ID: 20335218
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hematopoietic stem and progenitor cell mobilization in mice and humans by a first-in-class mirror-image oligonucleotide inhibitor of CXCL12.
    Vater A; Sahlmann J; Kröger N; Zöllner S; Lioznov M; Maasch C; Buchner K; Vossmeyer D; Schwoebel F; Purschke WG; Vonhoff S; Kruschinski A; Hübel K; Humphrey M; Klussmann S; Fliegert F
    Clin Pharmacol Ther; 2013 Jul; 94(1):150-7. PubMed ID: 23588307
    [TBL] [Abstract][Full Text] [Related]  

  • 19. RhoH is critical for cell-microenvironment interactions in chronic lymphocytic leukemia in mice and humans.
    Troeger A; Johnson AJ; Wood J; Blum WG; Andritsos LA; Byrd JC; Williams DA
    Blood; 2012 May; 119(20):4708-18. PubMed ID: 22474251
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chronic lymphocytic leukemia cells receive RAF-dependent survival signals in response to CXCL12 that are sensitive to inhibition by sorafenib.
    Messmer D; Fecteau JF; O'Hayre M; Bharati IS; Handel TM; Kipps TJ
    Blood; 2011 Jan; 117(3):882-9. PubMed ID: 21079155
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.