These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 24277195)

  • 1. Segregation of T-DNA copies in the progeny of a regenerant plant from a mannopine-positive hairy root line.
    David C; Tempé J
    Plant Mol Biol; 1987 Nov; 9(6):585-92. PubMed ID: 24277195
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genetic transformation of cauliflower (Brassica oleracea L. var. Botrytis) by Agrobacterium rhizogenes.
    David C; Tempé J
    Plant Cell Rep; 1988 Mar; 7(2):88-91. PubMed ID: 24241539
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The T-DNA of Agrobacterium rhizogenes is transmitted through meiosis to the progeny of hairy root plants.
    Costantino P; Spanò L; Pomponi M; Benvenuto E; Ancora G
    J Mol Appl Genet; 1984; 2(5):465-70. PubMed ID: 6090564
    [TBL] [Abstract][Full Text] [Related]  

  • 4. T-DNA length variability in mannopine hairy root: more than 50 kilobasepairs of pRi T-DNA can integrate in plant cells.
    David C; Petit A; Tempé J
    Plant Cell Rep; 1988 Mar; 7(2):92-5. PubMed ID: 24241540
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hairy root production in Arabidopsis thaliana: cotransformation with a promoter-trap vector results in complex T-DNA integration patterns.
    Karimi M; Van Montagu M; Gheysen G
    Plant Cell Rep; 1999 Dec; 19(2):133-142. PubMed ID: 30754738
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure of T-DNA in roots transformed by Agrobacterium rhizogenes.
    Byrne MC; Koplow J; David C; Tempé J; Chilton MD
    J Mol Appl Genet; 1983; 2(2):201-9. PubMed ID: 6875427
    [TBL] [Abstract][Full Text] [Related]  

  • 7. T-DNA fragments of hairy root plasmid pRi8196 are distantly related to octopine and nopaline Ti plasmid T-DNA.
    Lahners K; Byrne MC; Chilton MD
    Plasmid; 1984 Mar; 11(2):130-40. PubMed ID: 6328555
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A common organization of the T-DNA genes expressed in plant hairy roots induced by different plasmids of Agrobacterium rhizogenes.
    Combard A; Baucher MF
    Plant Mol Biol; 1988 Nov; 10(6):499-509. PubMed ID: 24277622
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The influence of plant growth regulators on callus induction in pumpkin (Cucurbita pepo L.) hairy roots.
    Katavić V; Jelaska S
    Int J Dev Biol; 1991 Sep; 35(3):265-8. PubMed ID: 1814408
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Establishment of Saussurea involucrata hairy roots culture and plantlet regeneration].
    Fu CX; Jin ZP; Yang R; Wu FY; Zhao DX
    Sheng Wu Gong Cheng Xue Bao; 2004 May; 20(3):366-71. PubMed ID: 15971607
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Genetic transformation of autotetraploid Isatis indigotica fort. induced by Ri T-DNA and plant regeneration].
    Li BH; Zhang HM; Xu TF; Ding RX
    Zhongguo Zhong Yao Za Zhi; 2000 Nov; 25(11):657-60. PubMed ID: 12525069
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genetic transformation of Gentiana macrophylla with Agrobacterium rhizogenes: growth and production of secoiridoid glucoside gentiopicroside in transformed hairy root cultures.
    Tiwari RK; Trivedi M; Guang ZC; Guo GQ; Zheng GC
    Plant Cell Rep; 2007 Feb; 26(2):199-210. PubMed ID: 16972092
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Opine biosynthesis in naturally transgenic plants: Genes and products.
    Matveeva T; Otten L
    Phytochemistry; 2021 Sep; 189():112813. PubMed ID: 34192603
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Large-scale production of hairy root.
    Uozumi N
    Adv Biochem Eng Biotechnol; 2004; 91():75-103. PubMed ID: 15453193
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development and validation of a UHPLC-ESI-QTOF mass spectrometry method to analyze opines, plant biomarkers of crown gall or hairy root diseases.
    Padilla R; Gaillard V; Le TN; Bellvert F; Chapulliot D; Nesme X; Dessaux Y; Vial L; Lavire C; Kerzaon I
    J Chromatogr B Analyt Technol Biomed Life Sci; 2021 Jan; 1162():122458. PubMed ID: 33383499
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of loss of T-DNA genes on MIA biosynthetic pathway gene regulation and alkaloid accumulation in Catharanthus roseus hairy roots.
    Taneja J; Jaggi M; Wankhede DP; Sinha AK
    Plant Cell Rep; 2010 Oct; 29(10):1119-29. PubMed ID: 20625736
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Hairy root induction and plant regeneration of Rehmannia glutinosa Libosch. f. hueichingensis (Chao et Schih) Hsiao transformed by Agrobacterium rhizogenes].
    Zhou YQ; Niu JY; Hao RW; Lin X; Jia JF; Hao JG; Lu LD
    Fen Zi Xi Bao Sheng Wu Xue Bao; 2007 Aug; 40(4):223-31. PubMed ID: 17966459
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Growth and terpenoid indole alkaloid production in Catharanthus roseus hairy root clones in relation to left- and right-termini-linked Ri T-DNA gene integration.
    Batra J; Dutta A; Singh D; Kumar S; Sen J
    Plant Cell Rep; 2004 Sep; 23(3):148-54. PubMed ID: 15221274
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Terpenoid indole alkaloid production by Catharanthus roseus hairy roots induced by Agrobacterium tumefaciens harboring rol ABC genes.
    Hong SB; Peebles CA; Shanks JV; San KY; Gibson SI
    Biotechnol Bioeng; 2006 Feb; 93(2):386-90. PubMed ID: 16261632
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineering root exudation of Lotus toward the production of two novel carbon compounds leads to the selection of distinct microbial populations in the rhizosphere.
    Oger PM; Mansouri H; Nesme X; Dessaux Y
    Microb Ecol; 2004 Jan; 47(1):96-103. PubMed ID: 15259274
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.