These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 24277242)

  • 1. Climate change implications of shifting forest management strategy in a boreal forest ecosystem of Norway.
    Bright RM; Antón-Fernández C; Astrup R; Cherubini F; Kvalevåg M; Strømman AH
    Glob Chang Biol; 2014 Feb; 20(2):607-21. PubMed ID: 24277242
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Climate warming feedback from mountain birch forest expansion: reduced albedo dominates carbon uptake.
    de Wit HA; Bryn A; Hofgaard A; Karstensen J; Kvalevåg MM; Peters GP
    Glob Chang Biol; 2014 Jul; 20(7):2344-55. PubMed ID: 24343906
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Radiative forcing impacts of boreal forest biofuels: a scenario study for Norway in light of albedo.
    Bright RM; Strømman AH; Peters GP
    Environ Sci Technol; 2011 Sep; 45(17):7570-80. PubMed ID: 21797227
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direct and indirect climate change effects on carbon dioxide fluxes in a thawing boreal forest-wetland landscape.
    Helbig M; Chasmer LE; Desai AR; Kljun N; Quinton WL; Sonnentag O
    Glob Chang Biol; 2017 Aug; 23(8):3231-3248. PubMed ID: 28132402
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bioenergy from forestry and changes in atmospheric CO2: reconciling single stand and landscape level approaches.
    Cherubini F; Guest G; Strømman AH
    J Environ Manage; 2013 Nov; 129():292-301. PubMed ID: 23974446
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fire as the dominant driver of central Canadian boreal forest carbon balance.
    Bond-Lamberty B; Peckham SD; Ahl DE; Gower ST
    Nature; 2007 Nov; 450(7166):89-92. PubMed ID: 17972883
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Carbon-equivalent metrics for albedo changes in land management contexts: relevance of the time dimension.
    Bright RM; Bogren W; Bernier P; Astrup R
    Ecol Appl; 2016 Sep; 26(6):1868-1880. PubMed ID: 27755703
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Large impacts of climatic warming on growth of boreal forests since 1960.
    Kauppi PE; Posch M; Pirinen P
    PLoS One; 2014; 9(11):e111340. PubMed ID: 25383552
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Net aboveground biomass declines of four major forest types with forest ageing and climate change in western Canada's boreal forests.
    Chen HY; Luo Y
    Glob Chang Biol; 2015 Oct; 21(10):3675-84. PubMed ID: 26136379
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluating the terrestrial carbon dioxide removal potential of improved forest management and accelerated forest conversion in Norway.
    Bright RM; Allen M; Antón-Fernández C; Belbo H; Dalsgaard L; Eisner S; Granhus A; Kjønaas OJ; Søgaard G; Astrup R
    Glob Chang Biol; 2020 Sep; 26(9):5087-5105. PubMed ID: 32559355
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Arctic and boreal ecosystems of western North America as components of the climate system.
    Chapin FS; Mcguire AD; Randerson J; Pielke R; Baldocchi D; Hobbie SE; Roulet N; Eugster W; Kasischke E; Rastetter EB; Zimov SA; Running SW
    Glob Chang Biol; 2000 Dec; 6(S1):211-223. PubMed ID: 35026938
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Forests and climate change: forcings, feedbacks, and the climate benefits of forests.
    Bonan GB
    Science; 2008 Jun; 320(5882):1444-9. PubMed ID: 18556546
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of spring phenology on seasonal and annual carbon balance in two contrasting New England forests.
    Richardson AD; Hollinger DY; Dail DB; Lee JT; Munger JW; O'keefe J
    Tree Physiol; 2009 Mar; 29(3):321-31. PubMed ID: 19203967
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adapting the planning and management of Norway spruce forests in mountain areas of Romania to environmental conditions including climate change.
    Tudoran GM; Zotta M
    Sci Total Environ; 2020 Jan; 698():133761. PubMed ID: 31493576
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simulating effects of fire disturbance and climate change on boreal forest productivity and evapotranspiration.
    Kang S; Kimball JS; Running SW
    Sci Total Environ; 2006 Jun; 362(1-3):85-102. PubMed ID: 16364407
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spring photosynthetic recovery of boreal Norway spruce under conditions of elevated [CO(2)] and air temperature.
    Wallin G; Hall M; Slaney M; Räntfors M; Medhurst J; Linder S
    Tree Physiol; 2013 Nov; 33(11):1177-91. PubMed ID: 24169104
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interactive climate factors restrict future increases in spring productivity of temperate and boreal trees.
    Zohner CM; Mo L; Pugh TAM; Bastin JF; Crowther TW
    Glob Chang Biol; 2020 Jul; 26(7):4042-4055. PubMed ID: 32347650
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A global assessment of forest surface albedo and its relationships with climate and atmospheric nitrogen deposition.
    Leonardi S; Magnani F; Nolè A; Van Noije T; Borghetti M
    Glob Chang Biol; 2015 Jan; 21(1):287-98. PubMed ID: 25044609
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impacts of forest loss on local climate across the conterminous United States: Evidence from satellite time-series observations.
    Li Y; Liu Y; Bohrer G; Cai Y; Wilson A; Hu T; Wang Z; Zhao K
    Sci Total Environ; 2022 Jan; 802():149651. PubMed ID: 34525747
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Almost 50 years of monitoring shows that climate, not forestry, controls long-term organic carbon fluxes in a large boreal watershed.
    Lepistö A; Futter MN; Kortelainen P
    Glob Chang Biol; 2014 Apr; 20(4):1225-37. PubMed ID: 24501106
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.