BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 24277294)

  • 1. Revisiting Mortimer's Genome Renewal Hypothesis: heterozygosity, homothallism, and the potential for adaptation in yeast.
    Magwene PM
    Adv Exp Med Biol; 2014; 781():37-48. PubMed ID: 24277294
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Outcrossing, mitotic recombination, and life-history trade-offs shape genome evolution in Saccharomyces cerevisiae.
    Magwene PM; Kayıkçı Ö; Granek JA; Reininga JM; Scholl Z; Murray D
    Proc Natl Acad Sci U S A; 2011 Feb; 108(5):1987-92. PubMed ID: 21245305
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adaptation of S. cerevisiae to Fermented Food Environments Reveals Remarkable Genome Plasticity and the Footprints of Domestication.
    Legras JL; Galeote V; Bigey F; Camarasa C; Marsit S; Nidelet T; Sanchez I; Couloux A; Guy J; Franco-Duarte R; Marcet-Houben M; Gabaldon T; Schuller D; Sampaio JP; Dequin S
    Mol Biol Evol; 2018 Jul; 35(7):1712-1727. PubMed ID: 29746697
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phenotypic and molecular evolution across 10,000 generations in laboratory budding yeast populations.
    Johnson MS; Gopalakrishnan S; Goyal J; Dillingham ME; Bakerlee CW; Humphrey PT; Jagdish T; Jerison ER; Kosheleva K; Lawrence KR; Min J; Moulana A; Phillips AM; Piper JC; Purkanti R; Rego-Costa A; McDonald MJ; Nguyen Ba AN; Desai MM
    Elife; 2021 Jan; 10():. PubMed ID: 33464204
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The budding yeast life cycle: More complex than anticipated?
    Fischer G; Liti G; Llorente B
    Yeast; 2021 Jan; 38(1):5-11. PubMed ID: 33197073
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genomic sequence diversity and population structure of Saccharomyces cerevisiae assessed by RAD-seq.
    Cromie GA; Hyma KE; Ludlow CL; Garmendia-Torres C; Gilbert TL; May P; Huang AA; Dudley AM; Fay JC
    G3 (Bethesda); 2013 Dec; 3(12):2163-71. PubMed ID: 24122055
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigating loss of heterozygosity in a SCRaMbLEd yeast genome.
    Dai J
    Sci China Life Sci; 2019 Jun; 62(6):868-869. PubMed ID: 30927172
    [No Abstract]   [Full Text] [Related]  

  • 8. Loss of heterozygosity by SCRaMbLEing.
    Li Y; Wu Y; Ma L; Guo Z; Xiao W; Yuan Y
    Sci China Life Sci; 2019 Mar; 62(3):381-393. PubMed ID: 30900161
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Loss of Heterozygosity Drives Adaptation in Hybrid Yeast.
    Smukowski Heil CS; DeSevo CG; Pai DA; Tucker CM; Hoang ML; Dunham MJ
    Mol Biol Evol; 2017 Jul; 34(7):1596-1612. PubMed ID: 28369610
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genomic convergence toward diploidy in Saccharomyces cerevisiae.
    Gerstein AC; Chun HJ; Grant A; Otto SP
    PLoS Genet; 2006 Sep; 2(9):e145. PubMed ID: 17002497
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genome evolution across 1,011 Saccharomyces cerevisiae isolates.
    Peter J; De Chiara M; Friedrich A; Yue JX; Pflieger D; Bergström A; Sigwalt A; Barre B; Freel K; Llored A; Cruaud C; Labadie K; Aury JM; Istace B; Lebrigand K; Barbry P; Engelen S; Lemainque A; Wincker P; Liti G; Schacherer J
    Nature; 2018 Apr; 556(7701):339-344. PubMed ID: 29643504
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evolution of the hemiascomycete yeasts: on life styles and the importance of inbreeding.
    Knop M
    Bioessays; 2006 Jul; 28(7):696-708. PubMed ID: 16929561
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genomic instability is associated with natural life span variation in Saccharomyces cerevisiae.
    Qin H; Lu M; Goldfarb DS
    PLoS One; 2008 Jul; 3(7):e2670. PubMed ID: 18628831
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genome sequence of Saccharomyces carlsbergensis, the world's first pure culture lager yeast.
    Walther A; Hesselbart A; Wendland J
    G3 (Bethesda); 2014 Feb; 4(5):783-93. PubMed ID: 24578374
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genome renewal: a new phenomenon revealed from a genetic study of 43 strains of Saccharomyces cerevisiae derived from natural fermentation of grape musts.
    Mortimer RK; Romano P; Suzzi G; Polsinelli M
    Yeast; 1994 Dec; 10(12):1543-52. PubMed ID: 7725789
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ecological and evolutionary genomics of Saccharomyces cerevisiae.
    Landry CR; Townsend JP; Hartl DL; Cavalieri D
    Mol Ecol; 2006 Mar; 15(3):575-91. PubMed ID: 16499686
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intrastrain genomic and phenotypic variability of the commercial Saccharomyces cerevisiae strain Zymaflore VL1 reveals microevolutionary adaptation to vineyard environments.
    Franco-Duarte R; Bigey F; Carreto L; Mendes I; Dequin S; Santos MA; Pais C; Schuller D
    FEMS Yeast Res; 2015 Sep; 15(6):. PubMed ID: 26187909
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The genomics of wild yeast populations sheds light on the domestication of man's best (micro) friend.
    Eberlein C; Leducq JB; Landry CR
    Mol Ecol; 2015 Nov; 24(21):5309-11. PubMed ID: 26509691
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Population perspectives on functional genomic variation in yeast.
    Skelly DA; Magwene PM
    Brief Funct Genomics; 2016 Mar; 15(2):138-46. PubMed ID: 26467711
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of the Saccharomyces cerevisiae pan-genome reveals a pool of copy number variants distributed in diverse yeast strains from differing industrial environments.
    Dunn B; Richter C; Kvitek DJ; Pugh T; Sherlock G
    Genome Res; 2012 May; 22(5):908-24. PubMed ID: 22369888
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.