These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

289 related articles for article (PubMed ID: 24277840)

  • 1. In situ structure and dynamics of DNA origami determined through molecular dynamics simulations.
    Yoo J; Aksimentiev A
    Proc Natl Acad Sci U S A; 2013 Dec; 110(50):20099-104. PubMed ID: 24277840
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cryo-Electron Microscopy and Mass Analysis of Oligolysine-Coated DNA Nanostructures.
    Bertosin E; Stömmer P; Feigl E; Wenig M; Honemann MN; Dietz H
    ACS Nano; 2021 Jun; 15(6):9391-9403. PubMed ID: 33724780
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanomechanical molecular devices made of DNA origami.
    Kuzuya A; Ohya Y
    Acc Chem Res; 2014 Jun; 47(6):1742-9. PubMed ID: 24772996
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conformational Dynamics of Mechanically Compliant DNA Nanostructures from Coarse-Grained Molecular Dynamics Simulations.
    Shi Z; Castro CE; Arya G
    ACS Nano; 2017 May; 11(5):4617-4630. PubMed ID: 28423273
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Practical Guide to Molecular Dynamics Simulations of DNA Origami Systems.
    Yoo J; Li CY; Slone SM; Maffeo C; Aksimentiev A
    Methods Mol Biol; 2018; 1811():209-229. PubMed ID: 29926456
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rhombic-Shaped Nanostructures and Mechanical Properties of 2D DNA Origami Constructed with Different Crossover/Nick Designs.
    Ma Z; Huang Y; Park S; Kawai K; Kim DN; Hirai Y; Tsuchiya T; Yamada H; Tabata O
    Small; 2018 Jan; 14(1):. PubMed ID: 29131541
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ionic conductivity, structural deformation, and programmable anisotropy of DNA origami in electric field.
    Li CY; Hemmig EA; Kong J; Yoo J; Hernández-Ainsa S; Keyser UF; Aksimentiev A
    ACS Nano; 2015 Feb; 9(2):1420-33. PubMed ID: 25623807
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sites of high local frustration in DNA origami.
    Kosinski R; Mukhortava A; Pfeifer W; Candelli A; Rauch P; Saccà B
    Nat Commun; 2019 Mar; 10(1):1061. PubMed ID: 30837459
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanomechanical DNA origami 'single-molecule beacons' directly imaged by atomic force microscopy.
    Kuzuya A; Sakai Y; Yamazaki T; Xu Y; Komiyama M
    Nat Commun; 2011 Aug; 2():449. PubMed ID: 21863016
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DNA origami: the art of folding DNA.
    Saccà B; Niemeyer CM
    Angew Chem Int Ed Engl; 2012 Jan; 51(1):58-66. PubMed ID: 22162047
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Planar 2D wireframe DNA origami.
    Wang X; Li S; Jun H; John T; Zhang K; Fowler H; Doye JPK; Chiu W; Bathe M
    Sci Adv; 2022 May; 8(20):eabn0039. PubMed ID: 35594345
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Force-Induced Unravelling of DNA Origami.
    Engel MC; Smith DM; Jobst MA; Sajfutdinow M; Liedl T; Romano F; Rovigatti L; Louis AA; Doye JPK
    ACS Nano; 2018 Jul; 12(7):6734-6747. PubMed ID: 29851456
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of DNA hairpin loops on the twist of planar DNA origami tiles.
    Li Z; Wang L; Yan H; Liu Y
    Langmuir; 2012 Jan; 28(4):1959-65. PubMed ID: 22126326
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular threading and tunable molecular recognition on DNA origami nanostructures.
    Wu N; Czajkowsky DM; Zhang J; Qu J; Ye M; Zeng D; Zhou X; Hu J; Shao Z; Li B; Fan C
    J Am Chem Soc; 2013 Aug; 135(33):12172-5. PubMed ID: 23924191
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coarse-grained modelling of the structural properties of DNA origami.
    Snodin BEK; Schreck JS; Romano F; Louis AA; Doye JPK
    Nucleic Acids Res; 2019 Feb; 47(3):1585-1597. PubMed ID: 30605514
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Meta-DNA structures.
    Yao G; Zhang F; Wang F; Peng T; Liu H; Poppleton E; Šulc P; Jiang S; Liu L; Gong C; Jing X; Liu X; Wang L; Liu Y; Fan C; Yan H
    Nat Chem; 2020 Nov; 12(11):1067-1075. PubMed ID: 32895523
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanical properties of DNA origami nanoassemblies are determined by Holliday junction mechanophores.
    Shrestha P; Emura T; Koirala D; Cui Y; Hidaka K; Maximuck WJ; Endo M; Sugiyama H; Mao H
    Nucleic Acids Res; 2016 Aug; 44(14):6574-82. PubMed ID: 27387283
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Revealing the structures of megadalton-scale DNA complexes with nucleotide resolution.
    Kube M; Kohler F; Feigl E; Nagel-Yüksel B; Willner EM; Funke JJ; Gerling T; Stömmer P; Honemann MN; Martin TG; Scheres SHW; Dietz H
    Nat Commun; 2020 Dec; 11(1):6229. PubMed ID: 33277481
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Complex wireframe DNA nanostructures from simple building blocks.
    Wang W; Chen S; An B; Huang K; Bai T; Xu M; Bellot G; Ke Y; Xiang Y; Wei B
    Nat Commun; 2019 Mar; 10(1):1067. PubMed ID: 30842408
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural Transformation of Wireframe DNA Origami via DNA Polymerase Assisted Gap-Filling.
    Agarwal NP; Matthies M; Joffroy B; Schmidt TL
    ACS Nano; 2018 Mar; 12(3):2546-2553. PubMed ID: 29451771
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.