BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

343 related articles for article (PubMed ID: 24277864)

  • 1. Transition between fast and slow gamma modes in rat hippocampus area CA1 in vitro is modulated by slow CA3 gamma oscillations.
    Pietersen AN; Ward PD; Hagger-Vaughan N; Wiggins J; Jefferys JG; Vreugdenhil M
    J Physiol; 2014 Feb; 592(4):605-20. PubMed ID: 24277864
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Feedforward inhibition underlies the propagation of cholinergically induced gamma oscillations from hippocampal CA3 to CA1.
    Zemankovics R; Veres JM; Oren I; Hájos N
    J Neurosci; 2013 Jul; 33(30):12337-51. PubMed ID: 23884940
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intrinsic Mechanisms of Frequency Selectivity in the Proximal Dendrites of CA1 Pyramidal Neurons.
    Combe CL; Canavier CC; Gasparini S
    J Neurosci; 2018 Sep; 38(38):8110-8127. PubMed ID: 30076213
    [TBL] [Abstract][Full Text] [Related]  

  • 4. μ-Opioid receptor activation modulates CA3-to-CA1 gamma oscillation phase-coupling.
    Zhang Y; Ahmed S; Neagu G; Wang Y; Li Z; Wen J; Liu C; Vreugdenhil M
    IBRO Rep; 2019 Jun; 6():122-131. PubMed ID: 30834352
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cannabinoids attenuate hippocampal γ oscillations by suppressing excitatory synaptic input onto CA3 pyramidal neurons and fast spiking basket cells.
    Holderith N; Németh B; Papp OI; Veres JM; Nagy GA; Hájos N
    J Physiol; 2011 Oct; 589(Pt 20):4921-34. PubMed ID: 21859823
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Extrinsic and local glutamatergic inputs of the rat hippocampal CA1 area differentially innervate pyramidal cells and interneurons.
    Takács VT; Klausberger T; Somogyi P; Freund TF; Gulyás AI
    Hippocampus; 2012 Jun; 22(6):1379-91. PubMed ID: 21956752
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Schaffer-specific local field potentials reflect discrete excitatory events at gamma frequency that may fire postsynaptic hippocampal CA1 units.
    Fernández-Ruiz A; Makarov VA; Benito N; Herreras O
    J Neurosci; 2012 Apr; 32(15):5165-76. PubMed ID: 22496562
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling sharp wave-ripple complexes through a CA3-CA1 network model with chemical synapses.
    Taxidis J; Coombes S; Mason R; Owen MR
    Hippocampus; 2012 May; 22(5):995-1017. PubMed ID: 21452258
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fast gamma oscillations are generated intrinsically in CA1 without the involvement of fast-spiking basket cells.
    Craig MT; McBain CJ
    J Neurosci; 2015 Feb; 35(8):3616-24. PubMed ID: 25716860
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Terminal field and firing selectivity of cholecystokinin-expressing interneurons in the hippocampal CA3 area.
    Lasztóczi B; Tukker JJ; Somogyi P; Klausberger T
    J Neurosci; 2011 Dec; 31(49):18073-93. PubMed ID: 22159120
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A computational study on plasticity during theta cycles at Schaffer collateral synapses on CA1 pyramidal cells in the hippocampus.
    Saudargiene A; Cobb S; Graham BP
    Hippocampus; 2015 Feb; 25(2):208-18. PubMed ID: 25220633
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Contribution of CA3 and CA1 pyramidal neurons to the tonic α7 nAChR-dependent glutamatergic input to CA1 pyramidal neurons.
    Banerjee J; Alkondon M; Albuquerque EX; Pereira EF
    Neurosci Lett; 2013 Oct; 554():167-71. PubMed ID: 23973303
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The hippocampal CA3 region can generate two distinct types of sharp wave-ripple complexes, in vitro.
    Hofer KT; Kandrács Á; Ulbert I; Pál I; Szabó C; Héja L; Wittner L
    Hippocampus; 2015 Feb; 25(2):169-86. PubMed ID: 25209976
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dopamine D4 receptor activation increases hippocampal gamma oscillations by enhancing synchronization of fast-spiking interneurons.
    Andersson R; Johnston A; Fisahn A
    PLoS One; 2012; 7(7):e40906. PubMed ID: 22815864
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Atorvastatin enhances kainate-induced gamma oscillations in rat hippocampal slices.
    Li C; Wang J; Zhao J; Wang Y; Liu Z; Guo FL; Wang XF; Vreugdenhil M; Lu CB
    Eur J Neurosci; 2016 Sep; 44(5):2236-46. PubMed ID: 27336700
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The critical role of persistent sodium current in hippocampal gamma oscillations.
    Kang YJ; Clement EM; Sumsky SL; Xiang Y; Park IH; Santaniello S; Greenfield LJ; Garcia-Rill E; Smith BN; Lee SH
    Neuropharmacology; 2020 Jan; 162():107787. PubMed ID: 31550457
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-generated theta oscillations in the hippocampus.
    Goutagny R; Jackson J; Williams S
    Nat Neurosci; 2009 Dec; 12(12):1491-3. PubMed ID: 19881503
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling fast and slow gamma oscillations with interneurons of different subtype.
    Keeley S; Fenton AA; Rinzel J
    J Neurophysiol; 2017 Mar; 117(3):950-965. PubMed ID: 27927782
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Parvalbumin and Somatostatin Interneurons Contribute to the Generation of Hippocampal Gamma Oscillations.
    Antonoudiou P; Tan YL; Kontou G; Upton AL; Mann EO
    J Neurosci; 2020 Sep; 40(40):7668-7687. PubMed ID: 32859716
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synaptic GABA(A) activation inhibits AMPA-kainate receptor-mediated bursting in the newborn (P0-P2) rat hippocampus.
    Lamsa K; Palva JM; Ruusuvuori E; Kaila K; Taira T
    J Neurophysiol; 2000 Jan; 83(1):359-66. PubMed ID: 10634879
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.