These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
359 related articles for article (PubMed ID: 24278036)
21. A subcomplex of three eIF3 subunits binds eIF1 and eIF5 and stimulates ribosome binding of mRNA and tRNA(i)Met. Phan L; Schoenfeld LW; Valásek L; Nielsen KH; Hinnebusch AG EMBO J; 2001 Jun; 20(11):2954-65. PubMed ID: 11387228 [TBL] [Abstract][Full Text] [Related]
22. Translation initiation factor eIF3 promotes programmed stop codon readthrough. Beznosková P; Wagner S; Jansen ME; von der Haar T; Valášek LS Nucleic Acids Res; 2015 May; 43(10):5099-111. PubMed ID: 25925566 [TBL] [Abstract][Full Text] [Related]
23. Mechanisms that ensure speed and fidelity in eukaryotic translation termination. Lawson MR; Lessen LN; Wang J; Prabhakar A; Corsepius NC; Green R; Puglisi JD Science; 2021 Aug; 373(6557):876-882. PubMed ID: 34413231 [TBL] [Abstract][Full Text] [Related]
24. Eukaryotic translation initiation factor 3 (eIF3) and eIF2 can promote mRNA binding to 40S subunits independently of eIF4G in yeast. Jivotovskaya AV; Valásek L; Hinnebusch AG; Nielsen KH Mol Cell Biol; 2006 Feb; 26(4):1355-72. PubMed ID: 16449648 [TBL] [Abstract][Full Text] [Related]
25. Translation Termination and Ribosome Recycling in Eukaryotes. Hellen CUT Cold Spring Harb Perspect Biol; 2018 Oct; 10(10):. PubMed ID: 29735640 [TBL] [Abstract][Full Text] [Related]
26. N-terminal region of Saccharomyces cerevisiae eRF3 is essential for the functioning of the eRF1/eRF3 complex beyond translation termination. Urakov VN; Valouev IA; Kochneva-Pervukhova NV; Packeiser AN; Vishnevsky AY; Glebov OO; Smirnov VN; Ter-Avanesyan MD BMC Mol Biol; 2006 Oct; 7():34. PubMed ID: 17034622 [TBL] [Abstract][Full Text] [Related]
27. Destabilization of Eukaryote mRNAs by 5' Proximal Stop Codons Can Occur Independently of the Nonsense-Mediated mRNA Decay Pathway. Gorgoni B; Zhao YB; Krishnan J; Stansfield I Cells; 2019 Jul; 8(8):. PubMed ID: 31370247 [TBL] [Abstract][Full Text] [Related]
28. Multiple roles for the C-terminal domain of eIF5 in translation initiation complex assembly and GTPase activation. Asano K; Shalev A; Phan L; Nielsen K; Clayton J; Valásek L; Donahue TF; Hinnebusch AG EMBO J; 2001 May; 20(9):2326-37. PubMed ID: 11331597 [TBL] [Abstract][Full Text] [Related]
29. Transcriptome-wide investigation of stop codon readthrough in Saccharomyces cerevisiae. Mangkalaphiban K; He F; Ganesan R; Wu C; Baker R; Jacobson A PLoS Genet; 2021 Apr; 17(4):e1009538. PubMed ID: 33878104 [TBL] [Abstract][Full Text] [Related]
30. A multifactor complex of eukaryotic initiation factors, eIF1, eIF2, eIF3, eIF5, and initiator tRNA(Met) is an important translation initiation intermediate in vivo. Asano K; Clayton J; Shalev A; Hinnebusch AG Genes Dev; 2000 Oct; 14(19):2534-46. PubMed ID: 11018020 [TBL] [Abstract][Full Text] [Related]
31. Embraced by eIF3: structural and functional insights into the roles of eIF3 across the translation cycle. Valášek LS; Zeman J; Wagner S; Beznosková P; Pavlíková Z; Mohammad MP; Hronová V; Herrmannová A; Hashem Y; Gunišová S Nucleic Acids Res; 2017 Nov; 45(19):10948-10968. PubMed ID: 28981723 [TBL] [Abstract][Full Text] [Related]
32. A 110-kilodalton subunit of translation initiation factor eIF3 and an associated 135-kilodalton protein are encoded by the Saccharomyces cerevisiae TIF32 and TIF31 genes. Vornlocher HP; Hanachi P; Ribeiro S; Hershey JW J Biol Chem; 1999 Jun; 274(24):16802-12. PubMed ID: 10358023 [TBL] [Abstract][Full Text] [Related]
33. [Characterization of missense mutations in the SUP45 gene of Saccharomyces cerevisiae encoding translation termination factor eRF1]. Moskalenko SE; Zhuravleva GA; Soom MIa; Shabel'skaia SV; Volkov KV; Zemlianko OM; Philippe M; Mironova LN; Inge-Vechtomov SG Genetika; 2004 May; 40(5):599-606. PubMed ID: 15272556 [TBL] [Abstract][Full Text] [Related]
34. A genetic approach for analyzing the co-operative function of the tRNA mimicry complex, eRF1/eRF3, in translation termination on the ribosome. Wada M; Ito K Nucleic Acids Res; 2014 Jul; 42(12):7851-66. PubMed ID: 24914055 [TBL] [Abstract][Full Text] [Related]
36. [Role of Proteins Interacting with the eRF1 and eRF3 Release Factors in the Regulation of Translation and Prionization]. Zhouravleva GA; Bondarev SA; Zemlyanko OM; Moskalenko SE Mol Biol (Mosk); 2022; 56(2):206-226. PubMed ID: 35403616 [TBL] [Abstract][Full Text] [Related]
37. Recognition of 3' nucleotide context and stop codon readthrough are determined during mRNA translation elongation. Biziaev N; Sokolova E; Yanvarev DV; Toropygin IY; Shuvalov A; Egorova T; Alkalaeva E J Biol Chem; 2022 Jul; 298(7):102133. PubMed ID: 35700825 [TBL] [Abstract][Full Text] [Related]
38. Not4 and Not5 modulate translation elongation by Rps7A ubiquitination, Rli1 moonlighting, and condensates that exclude eIF5A. Allen GE; Panasenko OO; Villanyi Z; Zagatti M; Weiss B; Pagliazzo L; Huch S; Polte C; Zahoran S; Hughes CS; Pelechano V; Ignatova Z; Collart MA Cell Rep; 2021 Aug; 36(9):109633. PubMed ID: 34469733 [TBL] [Abstract][Full Text] [Related]
39. Identification of a translation initiation factor 3 (eIF3) core complex, conserved in yeast and mammals, that interacts with eIF5. Phan L; Zhang X; Asano K; Anderson J; Vornlocher HP; Greenberg JR; Qin J; Hinnebusch AG Mol Cell Biol; 1998 Aug; 18(8):4935-46. PubMed ID: 9671501 [TBL] [Abstract][Full Text] [Related]