These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 24278243)

  • 1. Estimation of unsteady aerodynamics in the wake of a freely flying European starling (Sturnus vulgaris).
    Ben-Gida H; Kirchhefer A; Taylor ZJ; Bezner-Kerr W; Guglielmo CG; Kopp GA; Gurka R
    PLoS One; 2013; 8(11):e80086. PubMed ID: 24278243
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On the Estimation of Time Dependent Lift of a European Starling (Sturnus vulgaris) during Flapping Flight.
    Stalnov O; Ben-Gida H; Kirchhefer AJ; Guglielmo CG; Kopp GA; Liberzon A; Gurka R
    PLoS One; 2015; 10(9):e0134582. PubMed ID: 26394213
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flow pattern similarities in the near wake of three bird species suggest a common role for unsteady aerodynamic effects in lift generation.
    Gurka R; Krishnan K; Ben-Gida H; Kirchhefer AJ; Kopp GA; Guglielmo CG
    Interface Focus; 2017 Feb; 7(1):20160090. PubMed ID: 28163881
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Turbulent Wake-Flow Characteristics in the Near Wake of Freely Flying Raptors: A Comparative Analysis Between an Owl and a Hawk.
    Krishnan K; Ben-Gida H; Morgan G; Kopp GA; Guglielmo CG; Gurka R
    Integr Comp Biol; 2020 Nov; 60(5):1109-1122. PubMed ID: 32697833
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vortex wake and flight kinematics of a swift in cruising flight in a wind tunnel.
    Henningsson P; Spedding GR; Hedenström A
    J Exp Biol; 2008 Mar; 211(Pt 5):717-30. PubMed ID: 18281334
    [TBL] [Abstract][Full Text] [Related]  

  • 6. How oscillating aerodynamic forces explain the timbre of the hummingbird's hum and other animals in flapping flight.
    Hightower BJ; Wijnings PW; Scholte R; Ingersoll R; Chin DD; Nguyen J; Shorr D; Lentink D
    Elife; 2021 Mar; 10():. PubMed ID: 33724182
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effects of wing twist in slow-speed flapping flight of birds: trading brute force against efficiency.
    Thielicke W; Stamhuis EJ
    Bioinspir Biomim; 2018 Aug; 13(5):056015. PubMed ID: 30043756
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Aerodynamics and Power Requirements of Forward Flapping Flight in the Mango Stem Borer Beetle (
    Urca T; Debnath AK; Stefanini J; Gurka R; Ribak G
    Integr Org Biol; 2020; 2(1):obaa026. PubMed ID: 33796817
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Three-dimensional simulation for fast forward flight of a calliope hummingbird.
    Song J; Tobalske BW; Powers DR; Hedrick TL; Luo H
    R Soc Open Sci; 2016 Jun; 3(6):160230. PubMed ID: 27429779
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The vortex wake of blackcaps (Sylvia atricapilla L.) measured using high-speed digital particle image velocimetry (DPIV).
    Johansson LC; Hedenström A
    J Exp Biol; 2009 Oct; 212(Pt 20):3365-76. PubMed ID: 19801441
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinematics and aerodynamics of avian upstrokes during slow flight.
    Crandell KE; Tobalske BW
    J Exp Biol; 2015 Aug; 218(Pt 16):2518-27. PubMed ID: 26089528
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wake analysis of aerodynamic components for the glide envelope of a jackdaw (Corvus monedula).
    KleinHeerenbrink M; Warfvinge K; Hedenström A
    J Exp Biol; 2016 May; 219(Pt 10):1572-81. PubMed ID: 26994178
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vortex wake, downwash distribution, aerodynamic performance and wingbeat kinematics in slow-flying pied flycatchers.
    Muijres FT; Bowlin MS; Johansson LC; Hedenström A
    J R Soc Interface; 2012 Feb; 9(67):292-303. PubMed ID: 21676971
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of spanwise flexibility on the performance of flapping flyers in forward flight.
    Kodali D; Medina C; Kang CK; Aono H
    J R Soc Interface; 2017 Nov; 14(136):. PubMed ID: 29167372
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transition from leg to wing forces during take-off in birds.
    Provini P; Tobalske BW; Crandell KE; Abourachid A
    J Exp Biol; 2012 Dec; 215(Pt 23):4115-24. PubMed ID: 22972887
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Time-resolved vortex wake of a common swift flying over a range of flight speeds.
    Henningsson P; Muijres FT; Hedenström A
    J R Soc Interface; 2011 Jun; 8(59):807-16. PubMed ID: 21131333
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The complex aerodynamic footprint of desert locusts revealed by large-volume tomographic particle image velocimetry.
    Henningsson P; Michaelis D; Nakata T; Schanz D; Geisler R; Schröder A; Bomphrey RJ
    J R Soc Interface; 2015 Jul; 12(108):20150119. PubMed ID: 26040598
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neuromuscular control and kinematics of intermittent flight in the European starling (Sturnus vulgaris).
    Tobalske B
    J Exp Biol; 1995; 198(Pt 6):1259-73. PubMed ID: 9319121
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficiency of lift production in flapping and gliding flight of swifts.
    Henningsson P; Hedenström A; Bomphrey RJ
    PLoS One; 2014; 9(2):e90170. PubMed ID: 24587260
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The aerodynamics of insect flight.
    Sane SP
    J Exp Biol; 2003 Dec; 206(Pt 23):4191-208. PubMed ID: 14581590
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.