BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

314 related articles for article (PubMed ID: 24278295)

  • 1. Postnatal constant light compensates Cryptochrome1 and 2 double deficiency for disruption of circadian behavioral rhythms in mice under constant dark.
    Ono D; Honma S; Honma K
    PLoS One; 2013; 8(11):e80615. PubMed ID: 24278295
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CHRONO and DEC1/DEC2 compensate for lack of CRY1/CRY2 in expression of coherent circadian rhythm but not in generation of circadian oscillation in the neonatal mouse SCN.
    Ono D; Honma KI; Schmal C; Takumi T; Kawamoto T; Fujimoto K; Kato Y; Honma S
    Sci Rep; 2021 Sep; 11(1):19240. PubMed ID: 34584158
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cry1-/- circadian rhythmicity depends on SCN intercellular coupling.
    Evans JA; Pan H; Liu AC; Welsh DK
    J Biol Rhythms; 2012 Dec; 27(6):443-52. PubMed ID: 23223370
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cryptochromes are critical for the development of coherent circadian rhythms in the mouse suprachiasmatic nucleus.
    Ono D; Honma S; Honma K
    Nat Commun; 2013; 4():1666. PubMed ID: 23575670
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential regulation of mammalian period genes and circadian rhythmicity by cryptochromes 1 and 2.
    Vitaterna MH; Selby CP; Todo T; Niwa H; Thompson C; Fruechte EM; Hitomi K; Thresher RJ; Ishikawa T; Miyazaki J; Takahashi JS; Sancar A
    Proc Natl Acad Sci U S A; 1999 Oct; 96(21):12114-9. PubMed ID: 10518585
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Loss of circadian rhythm and light-induced suppression of pineal melatonin levels in Cry1 and Cry2 double-deficient mice.
    Yamanaka Y; Suzuki Y; Todo T; Honma K; Honma S
    Genes Cells; 2010 Oct; 15(10):1063-71. PubMed ID: 20825493
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of heterozygous and homozygous alleles in cryptochrome-deficient mice.
    Oda Y; Takasu NN; Ohno SN; Shirakawa Y; Sugimura M; Nakamura TJ; Nakamura W
    Neurosci Lett; 2022 Feb; 772():136415. PubMed ID: 34954114
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Distinct and separable roles for endogenous CRY1 and CRY2 within the circadian molecular clockwork of the suprachiasmatic nucleus, as revealed by the Fbxl3(Afh) mutation.
    Anand SN; Maywood ES; Chesham JE; Joynson G; Banks GT; Hastings MH; Nolan PM
    J Neurosci; 2013 Apr; 33(17):7145-53. PubMed ID: 23616524
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rhythmic expression of cryptochrome induces the circadian clock of arrhythmic suprachiasmatic nuclei through arginine vasopressin signaling.
    Edwards MD; Brancaccio M; Chesham JE; Maywood ES; Hastings MH
    Proc Natl Acad Sci U S A; 2016 Mar; 113(10):2732-7. PubMed ID: 26903624
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Long-term in vivo recording of circadian rhythms in brains of freely moving mice.
    Mei L; Fan Y; Lv X; Welsh DK; Zhan C; Zhang EE
    Proc Natl Acad Sci U S A; 2018 Apr; 115(16):4276-4281. PubMed ID: 29610316
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Restoration of circadian rhythmicity in circadian clock-deficient mice in constant light.
    Abraham D; Dallmann R; Steinlechner S; Albrecht U; Eichele G; Oster H
    J Biol Rhythms; 2006 Jun; 21(3):169-76. PubMed ID: 16731656
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Behavioural food anticipation in clock genes deficient mice: confirming old phenotypes, describing new phenotypes.
    Mendoza J; Albrecht U; Challet E
    Genes Brain Behav; 2010 Jul; 9(5):467-77. PubMed ID: 20180860
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lithium effects on circadian rhythms in fibroblasts and suprachiasmatic nucleus slices from Cry knockout mice.
    Noguchi T; Lo K; Diemer T; Welsh DK
    Neurosci Lett; 2016 Apr; 619():49-53. PubMed ID: 26930624
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of prokineticin 2 expression by light and the circadian clock.
    Cheng MY; Bittman EL; Hattar S; Zhou QY
    BMC Neurosci; 2005 Mar; 6():17. PubMed ID: 15762991
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Divergent roles of clock genes in retinal and suprachiasmatic nucleus circadian oscillators.
    Ruan GX; Gamble KL; Risner ML; Young LA; McMahon DG
    PLoS One; 2012; 7(6):e38985. PubMed ID: 22701739
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cryptochrome-dependent circadian periods in the arcuate nucleus.
    Uchida H; Nakamura TJ; Takasu NN; Todo T; Sakai T; Nakamura W
    Neurosci Lett; 2016 Jan; 610():123-8. PubMed ID: 26542738
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Restoring the Molecular Clockwork within the Suprachiasmatic Hypothalamus of an Otherwise Clockless Mouse Enables Circadian Phasing and Stabilization of Sleep-Wake Cycles and Reverses Memory Deficits.
    Maywood ES; Chesham JE; Winsky-Sommerer R; Hastings MH
    J Neurosci; 2021 Oct; 41(41):8562-8576. PubMed ID: 34446572
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cryptochrome proteins regulate the circadian intracellular behavior and localization of PER2 in mouse suprachiasmatic nucleus neurons.
    Smyllie NJ; Bagnall J; Koch AA; Niranjan D; Polidarova L; Chesham JE; Chin JW; Partch CL; Loudon ASI; Hastings MH
    Proc Natl Acad Sci U S A; 2022 Jan; 119(4):. PubMed ID: 35046033
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of constant darkness and constant light on circadian organization and reproductive responses in the ram.
    Ebling FJ; Lincoln GA; Wollnik F; Anderson N
    J Biol Rhythms; 1988; 3(4):365-84. PubMed ID: 2979646
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nonphotic entrainment of central and peripheral circadian clocks in mice by scheduled voluntary exercise under constant darkness.
    Sato RY; Yamanaka Y
    Am J Physiol Regul Integr Comp Physiol; 2023 Apr; 324(4):R526-R535. PubMed ID: 36802951
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.