BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 24278451)

  • 1. The effect of CO2 on algal growth in industrial waste water for bioenergy and bioremediation applications.
    Roberts DA; de Nys R; Paul NA
    PLoS One; 2013; 8(11):e81631. PubMed ID: 24278451
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bioremediation for coal-fired power stations using macroalgae.
    Roberts DA; Paul NA; Bird MI; de Nys R
    J Environ Manage; 2015 Apr; 153():25-32. PubMed ID: 25646673
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sustainable sources of biomass for bioremediation of heavy metals in waste water derived from coal-fired power generation.
    Saunders RJ; Paul NA; Hu Y; de Nys R
    PLoS One; 2012; 7(5):e36470. PubMed ID: 22590550
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Growth and metal bioconcentration by conspecific freshwater macroalgae cultured in industrial waste water.
    Ellison MB; de Nys R; Paul NA; Roberts DA
    PeerJ; 2014; 2():e401. PubMed ID: 24883258
    [TBL] [Abstract][Full Text] [Related]  

  • 5. From waste water treatment to land management: Conversion of aquatic biomass to biochar for soil amelioration and the fortification of crops with essential trace elements.
    Roberts DA; Paul NA; Cole AJ; de Nys R
    J Environ Manage; 2015 Jul; 157():60-8. PubMed ID: 25881153
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A biorefinery for valorization of industrial waste-water and flue gas by microalgae for waste mitigation, carbon-dioxide sequestration and algal biomass production.
    Yadav G; Dash SK; Sen R
    Sci Total Environ; 2019 Oct; 688():129-135. PubMed ID: 31229810
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Removing constraints on the biomass production of freshwater macroalgae by manipulating water exchange to manage nutrient flux.
    Cole AJ; de Nys R; Paul NA
    PLoS One; 2014; 9(7):e101284. PubMed ID: 25000501
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Selecting reliable and robust freshwater macroalgae for biomass applications.
    Lawton RJ; de Nys R; Paul NA
    PLoS One; 2013; 8(5):e64168. PubMed ID: 23717561
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of CO
    Velu C; Cirés S; Brinkman DL; Heimann K
    Heliyon; 2019 Apr; 5(4):e01549. PubMed ID: 31183423
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bioproduct Potential of Outdoor Cultures of
    Velu C; Cirés S; Brinkman DL; Heimann K
    Front Bioeng Biotechnol; 2020; 8():51. PubMed ID: 32117931
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Winter-time CO2 addition in high rate algal mesocosms for enhanced microalgal performance.
    Sutherland DL; Montemezzani V; Mehrabadi A; Craggs RJ
    Water Res; 2016 Feb; 89():301-8. PubMed ID: 26707731
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integration of microalgae cultivation with industrial waste remediation for biofuel and bioenergy production: opportunities and limitations.
    McGinn PJ; Dickinson KE; Bhatti S; Frigon JC; Guiot SR; O'Leary SJ
    Photosynth Res; 2011 Sep; 109(1-3):231-47. PubMed ID: 21461850
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantification of Heavy Metals and Other Inorganic Contaminants on the Productivity of Microalgae.
    Napan K; Hess D; McNeil B; Quinn JC
    J Vis Exp; 2015 Jul; (101):e52936. PubMed ID: 26274060
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bioremediation of a complex industrial effluent by biosorbents derived from freshwater macroalgae.
    Kidgell JT; de Nys R; Hu Y; Paul NA; Roberts DA
    PLoS One; 2014; 9(2):e94706. PubMed ID: 24919058
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impact of inorganic contaminants on microalgae productivity and bioremediation potential.
    Torres EM; Hess D; McNeil BT; Guy T; Quinn JC
    Ecotoxicol Environ Saf; 2017 May; 139():367-376. PubMed ID: 28189778
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Potential use of algae for the bioremediation of different types of wastewater and contaminants: Production of bioproducts and biofuel for green circular economy.
    Alazaiza MYD; Albahnasawi A; Ahmad Z; Bashir MJK; Al-Wahaibi T; Abujazar MSS; Abu Amr SS; Nassani DE
    J Environ Manage; 2022 Dec; 324():116415. PubMed ID: 36206653
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Algal biochar enhances the re-vegetation of stockpiled mine soils with native grass.
    Roberts DA; Cole AJ; Paul NA; de Nys R
    J Environ Manage; 2015 Sep; 161():173-180. PubMed ID: 26172107
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heavy metal bioremediation of coal-fired flue gas using microalgae under different CO
    Aslam A; Thomas-Hall SR; Mughal T; Zaman QU; Ehsan N; Javied S; Schenk PM
    J Environ Manage; 2019 Jul; 241():243-250. PubMed ID: 31005725
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of operational parameters on the performance of unialgal Oedogonium sp. filamentous algae nutrient scrubbers under controlled environmental conditions.
    Hariz HB; Lawton RJ; Craggs RJ
    J Environ Manage; 2023 Jan; 326(Pt A):116705. PubMed ID: 36379079
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Potential use of algae for heavy metal bioremediation, a critical review.
    Zeraatkar AK; Ahmadzadeh H; Talebi AF; Moheimani NR; McHenry MP
    J Environ Manage; 2016 Oct; 181():817-831. PubMed ID: 27397844
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.