These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
184 related articles for article (PubMed ID: 24278476)
1. The expression of stlA in Photorhabdus luminescens is controlled by nutrient limitation. Lango-Scholey L; Brachmann AO; Bode HB; Clarke DJ PLoS One; 2013; 8(11):e82152. PubMed ID: 24278476 [TBL] [Abstract][Full Text] [Related]
2. The gene stlA encodes a phenylalanine ammonia-lyase that is involved in the production of a stilbene antibiotic in Photorhabdus luminescens TT01. Williams JS; Thomas M; Clarke DJ Microbiology (Reading); 2005 Aug; 151(Pt 8):2543-2550. PubMed ID: 16079333 [TBL] [Abstract][Full Text] [Related]
3. Cinnamic acid, an autoinducer of its own biosynthesis, is processed via Hca enzymes in Photorhabdus luminescens. Chalabaev S; Turlin E; Bay S; Ganneau C; Brito-Fravallo E; Charles JF; Danchin A; Biville F Appl Environ Microbiol; 2008 Mar; 74(6):1717-25. PubMed ID: 18245247 [TBL] [Abstract][Full Text] [Related]
4. Alarmone (p)ppGpp regulates the transition from pathogenicity to mutualism in Photorhabdus luminescens. Bager R; Roghanian M; Gerdes K; Clarke DJ Mol Microbiol; 2016 May; 100(4):735-47. PubMed ID: 26845750 [TBL] [Abstract][Full Text] [Related]
5. HdfR is a regulator in Photorhabdus luminescens that modulates metabolism and symbiosis with the nematode Heterorhabditis. Easom CA; Clarke DJ Environ Microbiol; 2012 Apr; 14(4):953-66. PubMed ID: 22151606 [TBL] [Abstract][Full Text] [Related]
6. A metabolic switch is involved in lifestyle decisions in Photorhabdus luminescens. Lango L; Clarke DJ Mol Microbiol; 2010 Sep; 77(6):1394-405. PubMed ID: 20662779 [TBL] [Abstract][Full Text] [Related]
7. Identification of genes involved in the mutualistic colonization of the nematode Heterorhabditis bacteriophora by the bacterium Photorhabdus luminescens. Easom CA; Joyce SA; Clarke DJ BMC Microbiol; 2010 Feb; 10():45. PubMed ID: 20149243 [TBL] [Abstract][Full Text] [Related]
8. Iso-propyl stilbene: a life cycle signal? Hapeshi A; Benarroch JM; Clarke DJ; Waterfield NR Microbiology (Reading); 2019 May; 165(5):516-526. PubMed ID: 30882293 [TBL] [Abstract][Full Text] [Related]
9. Enhanced production of trans-cinnamic acid in Photorhabdus luminescens with homolog expression and deletion strategies. Ulgen Gokduman F; Yılmaz S; Bode HB J Appl Microbiol; 2024 Jul; 135(7):. PubMed ID: 38906846 [TBL] [Abstract][Full Text] [Related]
10. Identification, characterization, and regulation of a cluster of genes involved in carbapenem biosynthesis in Photorhabdus luminescens. Derzelle S; Duchaud E; Kunst F; Danchin A; Bertin P Appl Environ Microbiol; 2002 Aug; 68(8):3780-9. PubMed ID: 12147472 [TBL] [Abstract][Full Text] [Related]
11. The Regulation of Secondary Metabolism and Mutualism in the Insect Pathogenic Bacterium Photorhabdus luminescens. Joyce SA; Lango L; Clarke DJ Adv Appl Microbiol; 2011; 76():1-25. PubMed ID: 21924970 [TBL] [Abstract][Full Text] [Related]
12. Ail and PagC-related proteins in the entomopathogenic bacteria of Photorhabdus genus. Mouammine A; Lanois A; Pagès S; Lafay B; Molle V; Canova M; Girard PA; Duvic B; Givaudan A; Gaudriault S PLoS One; 2014; 9(10):e110060. PubMed ID: 25333642 [TBL] [Abstract][Full Text] [Related]
13. Involvement of Vitamin B6 Biosynthesis Pathways in the Insecticidal Activity of Photorhabdus luminescens. Sato K; Yoshiga T; Hasegawa K Appl Environ Microbiol; 2016 Jun; 82(12):3546-3553. PubMed ID: 27060119 [TBL] [Abstract][Full Text] [Related]
14. Regulatory role of UvrY in adaptation of Photorhabdus luminescens growth inside the insect. Krin E; Derzelle S; Bedard K; Adib-Conquy M; Turlin E; Lenormand P; Hullo MF; Bonne I; Chakroun N; Lacroix C; Danchin A Environ Microbiol; 2008 May; 10(5):1118-34. PubMed ID: 18248456 [TBL] [Abstract][Full Text] [Related]
15. HexA is a versatile regulator involved in the control of phenotypic heterogeneity of Photorhabdus luminescens. Langer A; Moldovan A; Harmath C; Joyce SA; Clarke DJ; Heermann R PLoS One; 2017; 12(4):e0176535. PubMed ID: 28448559 [TBL] [Abstract][Full Text] [Related]
16. Comparative in vivo gene expression of the closely related bacteria Photorhabdus temperata and Xenorhabdus koppenhoeferi upon infection of the same insect host, Rhizotrogus majalis. An R; Sreevatsan S; Grewal PS BMC Genomics; 2009 Sep; 10():433. PubMed ID: 19754939 [TBL] [Abstract][Full Text] [Related]
17. Photorhabdus luminescens LN2 requires rpoS for nematicidal activity and nematode development. Qiu X; Wu C; Cao L; Ehlers RU; Han R FEMS Microbiol Lett; 2016 Mar; 363(6):. PubMed ID: 26884480 [TBL] [Abstract][Full Text] [Related]
18. Stilbene epoxidation and detoxification in a Park HB; Sampathkumar P; Perez CE; Lee JH; Tran J; Bonanno JB; Hallem EA; Almo SC; Crawford JM J Biol Chem; 2017 Apr; 292(16):6680-6694. PubMed ID: 28246174 [TBL] [Abstract][Full Text] [Related]
19. Exploiting a global regulator for small molecule discovery in Photorhabdus luminescens. Kontnik R; Crawford JM; Clardy J ACS Chem Biol; 2010 Jul; 5(7):659-65. PubMed ID: 20524642 [TBL] [Abstract][Full Text] [Related]
20. The role of iron uptake in pathogenicity and symbiosis in Photorhabdus luminescens TT01. Watson RJ; Millichap P; Joyce SA; Reynolds S; Clarke DJ BMC Microbiol; 2010 Jun; 10():177. PubMed ID: 20569430 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]