These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
187 related articles for article (PubMed ID: 24279289)
41. Effects of co-adsorption on interfacial charge transfer in a quantum dot@dye composite. Cui P; Xue Y Nanoscale Res Lett; 2021 Sep; 16(1):147. PubMed ID: 34542732 [TBL] [Abstract][Full Text] [Related]
42. A layer-by-layer ZnO nanoparticle-PbS quantum dot self-assembly platform for ultrafast interfacial electron injection. Eita M; Usman A; El-Ballouli AO; Alarousu E; Bakr OM; Mohammed OF Small; 2015 Jan; 11(1):112-8. PubMed ID: 25163799 [TBL] [Abstract][Full Text] [Related]
43. Time-domain ab initio study of charge relaxation and recombination in dye-sensitized TiO2. Duncan WR; Craig CF; Prezhdo OV J Am Chem Soc; 2007 Jul; 129(27):8528-43. PubMed ID: 17579405 [TBL] [Abstract][Full Text] [Related]
44. Proceedings of the Second Workshop on Theory meets Industry (Erwin-Schrödinger-Institute (ESI), Vienna, Austria, 12-14 June 2007). Hafner J J Phys Condens Matter; 2008 Feb; 20(6):060301. PubMed ID: 21693862 [TBL] [Abstract][Full Text] [Related]
45. Ultrafast, asymmetric charge transfer and slow charge recombination in porphyrin/CNT composites demonstrated by time-domain atomistic simulation. Sarkar R; Habib M; Pal S; Prezhdo OV Nanoscale; 2018 Jul; 10(26):12683-12694. PubMed ID: 29946626 [TBL] [Abstract][Full Text] [Related]
46. Reduced charge recombination in a co-sensitized quantum dot solar cell with two different sizes of CdSe quantum dot. Chen J; Lei W; Deng WQ Nanoscale; 2011 Feb; 3(2):674-7. PubMed ID: 21132215 [TBL] [Abstract][Full Text] [Related]
47. Why Chemical Vapor Deposition Grown MoS Li L; Long R; Prezhdo OV Nano Lett; 2018 Jun; 18(6):4008-4014. PubMed ID: 29772904 [TBL] [Abstract][Full Text] [Related]
48. Common Defects Accelerate Charge Separation and Reduce Recombination in CNT/Molecule Composites: Atomistic Quantum Dynamics. Sarkar R; Kar M; Habib M; Zhou G; Frauenheim T; Sarkar P; Pal S; Prezhdo OV J Am Chem Soc; 2021 May; 143(17):6649-6656. PubMed ID: 33896175 [TBL] [Abstract][Full Text] [Related]
49. Donor-Acceptor Interaction Determines the Mechanism of Photoinduced Electron Injection from Graphene Quantum Dots into TiO Long R; Casanova D; Fang WH; Prezhdo OV J Am Chem Soc; 2017 Feb; 139(7):2619-2629. PubMed ID: 28125783 [TBL] [Abstract][Full Text] [Related]
50. Charging of quantum dots by sulfide redox electrolytes reduces electron injection efficiency in quantum dot sensitized solar cells. Zhu H; Song N; Lian T J Am Chem Soc; 2013 Aug; 135(31):11461-4. PubMed ID: 23865741 [TBL] [Abstract][Full Text] [Related]
51. CdSe quantum dot-fullerene hybrid nanocomposite for solar energy conversion: electron transfer and photoelectrochemistry. Bang JH; Kamat PV ACS Nano; 2011 Dec; 5(12):9421-7. PubMed ID: 22107780 [TBL] [Abstract][Full Text] [Related]
52. Superoxide/Peroxide Chemistry Extends Charge Carriers' Lifetime but Undermines Chemical Stability of CH He J; Fang WH; Long R; Prezhdo OV J Am Chem Soc; 2019 Apr; 141(14):5798-5807. PubMed ID: 30882215 [TBL] [Abstract][Full Text] [Related]
53. Disparity in Photoexcitation Dynamics between Vertical and Lateral MoS Yang Y; Fang WH; Long R J Phys Chem Lett; 2017 Dec; 8(23):5771-5778. PubMed ID: 29129078 [TBL] [Abstract][Full Text] [Related]
54. Electron dynamics in dye-sensitized solar cells: effects of surface terminations and defects. Li Z; Zhang X; Lu G J Phys Chem B; 2010 Dec; 114(51):17077-83. PubMed ID: 21133385 [TBL] [Abstract][Full Text] [Related]
55. Multiple exciton generation and recombination dynamics in small Si and CdSe quantum dots: an ab initio time-domain study. Hyeon-Deuk K; Prezhdo OV ACS Nano; 2012 Feb; 6(2):1239-50. PubMed ID: 22214339 [TBL] [Abstract][Full Text] [Related]
56. Fast Energy Relaxation by Trap States Decreases Electron Mobility in TiO2 Nanotubes: Time-Domain Ab Initio Analysis. Guo Z; Prezhdo OV; Hou T; Chen X; Lee ST; Li Y J Phys Chem Lett; 2014 May; 5(10):1642-7. PubMed ID: 26270359 [TBL] [Abstract][Full Text] [Related]
57. Efficient hybrid solar cells using PbS(x)Se(1-x) quantum dots and nanorods for broad-range photon absorption and well-assembled charge transfer networks. Nam M; Kim S; Kim S; Kim SW; Lee K Nanoscale; 2013 Sep; 5(17):8202-9. PubMed ID: 23831941 [TBL] [Abstract][Full Text] [Related]
58. Control of Electronic Structures and Phonon Dynamics in Quantum Dot Superlattices by Manipulation of Interior Nanospace. Chang IY; Kim D; Hyeon-Deuk K ACS Appl Mater Interfaces; 2016 Jul; 8(28):18321-7. PubMed ID: 27385641 [TBL] [Abstract][Full Text] [Related]
59. Modulating electronic coupling at the quantum dot/molecule interface by wavefunction engineering. Kaledin AL; Hill CL; Lian T; Musaev DG J Chem Phys; 2019 Mar; 150(12):124704. PubMed ID: 30927884 [TBL] [Abstract][Full Text] [Related]
60. Exciton dissociation in an NIR-active triohybrid nanocrystal leading to efficient generation of reactive oxygen species. Patwari J; Joshi H; Mandal H; Roy L; Bhattacharya C; Lemmens P; Pal SK Phys Chem Chem Phys; 2019 May; 21(20):10667-10676. PubMed ID: 31086863 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]