BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 24279297)

  • 1. Characterising ChIP-seq binding patterns by model-based peak shape deconvolution.
    Mendoza-Parra MA; Nowicka M; Van Gool W; Gronemeyer H
    BMC Genomics; 2013 Nov; 14(1):834. PubMed ID: 24279297
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Using combined evidence from replicates to evaluate ChIP-seq peaks.
    Jalili V; Matteucci M; Masseroli M; Morelli MJ
    Bioinformatics; 2015 Sep; 31(17):2761-9. PubMed ID: 25957351
    [TBL] [Abstract][Full Text] [Related]  

  • 3. RECAP reveals the true statistical significance of ChIP-seq peak calls.
    Chitpin JG; Awdeh A; Perkins TJ
    Bioinformatics; 2019 Oct; 35(19):3592-3598. PubMed ID: 30824903
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unified Analysis of Multiple ChIP-Seq Datasets.
    Ma G; Babarinde IA; Zhuang Q; Hutchins AP
    Methods Mol Biol; 2021; 2198():451-465. PubMed ID: 32822050
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Triform algorithm: improved sensitivity and specificity in ChIP-Seq peak finding.
    Kornacker K; Rye MB; Håndstad T; Drabløs F
    BMC Bioinformatics; 2012 Jul; 13():176. PubMed ID: 22827163
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An improved ChIP-seq peak detection system for simultaneously identifying post-translational modified transcription factors by combinatorial fusion, using SUMOylation as an example.
    Cheng CY; Chu CH; Hsu HW; Hsu FR; Tang CY; Wang WC; Kung HJ; Chang PC
    BMC Genomics; 2014; 15 Suppl 1(Suppl 1):S1. PubMed ID: 24564277
    [TBL] [Abstract][Full Text] [Related]  

  • 7. AIControl: replacing matched control experiments with machine learning improves ChIP-seq peak identification.
    Hiranuma N; Lundberg SM; Lee SI
    Nucleic Acids Res; 2019 Jun; 47(10):e58. PubMed ID: 30869146
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improving analysis of transcription factor binding sites within ChIP-Seq data based on topological motif enrichment.
    Worsley Hunt R; Mathelier A; Del Peso L; Wasserman WW
    BMC Genomics; 2014 Jun; 15(1):472. PubMed ID: 24927817
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ChIP-R: Assembling reproducible sets of ChIP-seq and ATAC-seq peaks from multiple replicates.
    Newell R; Pienaar R; Balderson B; Piper M; Essebier A; Bodén M
    Genomics; 2021 Jul; 113(4):1855-1866. PubMed ID: 33878366
    [TBL] [Abstract][Full Text] [Related]  

  • 10. dPeak: high resolution identification of transcription factor binding sites from PET and SET ChIP-Seq data.
    Chung D; Park D; Myers K; Grass J; Kiley P; Landick R; Keleş S
    PLoS Comput Biol; 2013; 9(10):e1003246. PubMed ID: 24146601
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Saturation analysis of ChIP-seq data for reproducible identification of binding peaks.
    Hansen P; Hecht J; Ibrahim DM; Krannich A; Truss M; Robinson PN
    Genome Res; 2015 Sep; 25(9):1391-400. PubMed ID: 26163319
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DiffChIPL: a differential peak analysis method for high-throughput sequencing data with biological replicates based on limma.
    Chen Y; Chen S; Lei EP
    Bioinformatics; 2022 Sep; 38(17):4062-4069. PubMed ID: 35809062
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Decoding ChIP-seq with a double-binding signal refines binding peaks to single-nucleotides and predicts cooperative interaction.
    Gomes AL; Abeel T; Peterson M; Azizi E; Lyubetskaya A; Carvalho L; Galagan J
    Genome Res; 2014 Oct; 24(10):1686-97. PubMed ID: 25024162
    [TBL] [Abstract][Full Text] [Related]  

  • 14. AREM: aligning short reads from ChIP-sequencing by expectation maximization.
    Newkirk D; Biesinger J; Chon A; Yokomori K; Xie X
    J Comput Biol; 2011 Nov; 18(11):1495-505. PubMed ID: 22035330
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identifying ChIP-seq enrichment using MACS.
    Feng J; Liu T; Qin B; Zhang Y; Liu XS
    Nat Protoc; 2012 Sep; 7(9):1728-40. PubMed ID: 22936215
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Discovering transcription factor binding sites in highly repetitive regions of genomes with multi-read analysis of ChIP-Seq data.
    Chung D; Kuan PF; Li B; Sanalkumar R; Liang K; Bresnick EH; Dewey C; Keleş S
    PLoS Comput Biol; 2011 Jul; 7(7):e1002111. PubMed ID: 21779159
    [TBL] [Abstract][Full Text] [Related]  

  • 17. WACS: improving ChIP-seq peak calling by optimally weighting controls.
    Awdeh A; Turcotte M; Perkins TJ
    BMC Bioinformatics; 2021 Feb; 22(1):69. PubMed ID: 33588754
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chromatin Immunoprecipitation-Sequencing (ChIP-seq) for Mapping of Estrogen Receptor-Chromatin Interactions in Breast Cancer.
    Holmes KA; Brown GD; Carroll JS
    Methods Mol Biol; 2016; 1366():79-98. PubMed ID: 26585129
    [TBL] [Abstract][Full Text] [Related]  

  • 19. GeF-seq: A Simple Procedure for Base Pair Resolution ChIP-seq.
    Chumsakul O; Nakamura K; Ishikawa S; Oshima T
    Methods Mol Biol; 2018; 1837():33-47. PubMed ID: 30109604
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chromatin Immunoprecipitation Sequencing (ChIP-Seq) for Transcription Factors and Chromatin Factors in Arabidopsis thaliana Roots: From Material Collection to Data Analysis.
    Cortijo S; Charoensawan V; Roudier F; Wigge PA
    Methods Mol Biol; 2018; 1761():231-248. PubMed ID: 29525962
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.