These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Impact of tetramerization on the ligand recognition of N1 influenza neuraminidase via MMGBSA approach. Bello M Biopolymers; 2019 May; 110(5):e23251. PubMed ID: 30589081 [TBL] [Abstract][Full Text] [Related]
3. The universal epitope of influenza A viral neuraminidase fundamentally contributes to enzyme activity and viral replication. Doyle TM; Jaentschke B; Van Domselaar G; Hashem AM; Farnsworth A; Forbes NE; Li C; Wang J; He R; Brown EG; Li X J Biol Chem; 2013 Jun; 288(25):18283-9. PubMed ID: 23645684 [TBL] [Abstract][Full Text] [Related]
4. Evolutionarily conserved residues at an oligomerization interface of the influenza A virus neuraminidase are essential for viral survival. Mok CK; Chen GW; Shih KC; Gong YN; Lin SJ; Horng JT; Hsu JT; Chen CJ; Shih SR Virology; 2013 Dec; 447(1-2):32-44. PubMed ID: 24210097 [TBL] [Abstract][Full Text] [Related]
5. Structural evidence for a second sialic acid binding site in avian influenza virus neuraminidases. Varghese JN; Colman PM; van Donkelaar A; Blick TJ; Sahasrabudhe A; McKimm-Breschkin JL Proc Natl Acad Sci U S A; 1997 Oct; 94(22):11808-12. PubMed ID: 9342319 [TBL] [Abstract][Full Text] [Related]
6. The binding properties of the H5N1 influenza virus neuraminidase as inferred from molecular modeling. Raab M; Tvaroška I J Mol Model; 2011 Jun; 17(6):1445-56. PubMed ID: 20853123 [TBL] [Abstract][Full Text] [Related]
7. Impact of calcium on N1 influenza neuraminidase dynamics and binding free energy. Lawrenz M; Wereszczynski J; Amaro R; Walker R; Roitberg A; McCammon JA Proteins; 2010 Aug; 78(11):2523-32. PubMed ID: 20602360 [TBL] [Abstract][Full Text] [Related]
8. Using common spatial distributions of atoms to relate functionally divergent influenza virus N10 and N11 protein structures to functionally characterized neuraminidase structures, toxin cell entry domains, and non-influenza virus cell entry domains. Weininger A; Weininger S PLoS One; 2015; 10(2):e0117499. PubMed ID: 25706124 [TBL] [Abstract][Full Text] [Related]
9. Crystal structures of two subtype N10 neuraminidase-like proteins from bat influenza A viruses reveal a diverged putative active site. Zhu X; Yang H; Guo Z; Yu W; Carney PJ; Li Y; Chen LM; Paulson JC; Donis RO; Tong S; Stevens J; Wilson IA Proc Natl Acad Sci U S A; 2012 Nov; 109(46):18903-8. PubMed ID: 23012478 [TBL] [Abstract][Full Text] [Related]
10. Understanding the cross-resistance of oseltamivir to H1N1 and H5N1 influenza A neuraminidase mutations using multidimensional computational analyses. Singh A; Soliman ME Drug Des Devel Ther; 2015; 9():4137-54. PubMed ID: 26257512 [TBL] [Abstract][Full Text] [Related]
11. Molecular dynamics simulations suggest that electrostatic funnel directs binding of Tamiflu to influenza N1 neuraminidases. Le L; Lee EH; Hardy DJ; Truong TN; Schulten K PLoS Comput Biol; 2010 Sep; 6(9):. PubMed ID: 20885781 [TBL] [Abstract][Full Text] [Related]
12. Role of secondary sialic acid binding sites in influenza N1 neuraminidase. Sung JC; Van Wynsberghe AW; Amaro RE; Li WW; McCammon JA J Am Chem Soc; 2010 Mar; 132(9):2883-5. PubMed ID: 20155919 [TBL] [Abstract][Full Text] [Related]
13. N-Linked Glycan Sites on the Influenza A Virus Neuraminidase Head Domain Are Required for Efficient Viral Incorporation and Replication. Östbye H; Gao J; Martinez MR; Wang H; de Gier JW; Daniels R J Virol; 2020 Sep; 94(19):. PubMed ID: 32699088 [TBL] [Abstract][Full Text] [Related]
14. Structural restrictions for influenza neuraminidase activity promote adaptation and diversification. Wang H; Dou D; Östbye H; Revol R; Daniels R Nat Microbiol; 2019 Dec; 4(12):2565-2577. PubMed ID: 31451775 [TBL] [Abstract][Full Text] [Related]
15. Microsecond Molecular Dynamics Simulations of Influenza Neuraminidase Suggest a Mechanism for the Increased Virulence of Stalk-Deletion Mutants. Durrant JD; Bush RM; Amaro RE J Phys Chem B; 2016 Aug; 120(33):8590-9. PubMed ID: 27141956 [TBL] [Abstract][Full Text] [Related]
16. Characterizing loop dynamics and ligand recognition in human- and avian-type influenza neuraminidases via generalized born molecular dynamics and end-point free energy calculations. Amaro RE; Cheng X; Ivanov I; Xu D; McCammon JA J Am Chem Soc; 2009 Apr; 131(13):4702-9. PubMed ID: 19296611 [TBL] [Abstract][Full Text] [Related]
17. Mutation-induced loop opening and energetics for binding of tamiflu to influenza N8 neuraminidase. Kar P; Knecht V J Phys Chem B; 2012 May; 116(21):6137-49. PubMed ID: 22553951 [TBL] [Abstract][Full Text] [Related]
18. Antiviral susceptibility of avian and swine influenza virus of the N1 neuraminidase subtype. Stoner TD; Krauss S; DuBois RM; Negovetich NJ; Stallknecht DE; Senne DA; Gramer MR; Swafford S; DeLiberto T; Govorkova EA; Webster RG J Virol; 2010 Oct; 84(19):9800-9. PubMed ID: 20660186 [TBL] [Abstract][Full Text] [Related]
19. Resistance to Mutant Group 2 Influenza Virus Neuraminidases of an Oseltamivir-Zanamivir Hybrid Inhibitor. Wu Y; Gao F; Qi J; Bi Y; Fu L; Mohan S; Chen Y; Li X; Pinto BM; Vavricka CJ; Tien P; Gao GF J Virol; 2016 Dec; 90(23):10693-10700. PubMed ID: 27654293 [TBL] [Abstract][Full Text] [Related]
20. Exploring the mechanism of zanamivir resistance in a neuraminidase mutant: a molecular dynamics study. Han N; Liu X; Mu Y PLoS One; 2012; 7(9):e44057. PubMed ID: 22970161 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]