BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 24279729)

  • 1. Exploring signal transduction in heteromultimeric protein based on energy dissipation model.
    Ma CW; Xiu ZL; Zeng AP
    J Biomol Struct Dyn; 2015; 33(1):134-46. PubMed ID: 24279729
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crystal structures of the regulatory subunit of Thr-sensitive aspartate kinase from Thermus thermophilus.
    Yoshida A; Tomita T; Kono H; Fushinobu S; Kuzuyama T; Nishiyama M
    FEBS J; 2009 Jun; 276(11):3124-36. PubMed ID: 19490113
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Discovery of intramolecular signal transduction network based on a new protein dynamics model of energy dissipation.
    Ma CW; Xiu ZL; Zeng AP
    PLoS One; 2012; 7(2):e31529. PubMed ID: 22363664
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanism of concerted inhibition of alpha2beta2-type hetero-oligomeric aspartate kinase from Corynebacterium glutamicum.
    Yoshida A; Tomita T; Kuzuyama T; Nishiyama M
    J Biol Chem; 2010 Aug; 285(35):27477-27486. PubMed ID: 20573952
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural Insight into concerted inhibition of alpha 2 beta 2-type aspartate kinase from Corynebacterium glutamicum.
    Yoshida A; Tomita T; Kurihara T; Fushinobu S; Kuzuyama T; Nishiyama M
    J Mol Biol; 2007 Apr; 368(2):521-36. PubMed ID: 17350037
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A new concept to reveal protein dynamics based on energy dissipation.
    Ma CW; Xiu ZL; Zeng AP
    PLoS One; 2011; 6(10):e26453. PubMed ID: 22022616
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Integrating molecular dynamics and co-evolutionary analysis for reliable target prediction and deregulation of the allosteric inhibition of aspartokinase for amino acid production.
    Chen Z; Rappert S; Sun J; Zeng AP
    J Biotechnol; 2011 Jul; 154(4):248-54. PubMed ID: 21609739
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coevolutionary analysis enabled rational deregulation of allosteric enzyme inhibition in Corynebacterium glutamicum for lysine production.
    Chen Z; Meyer W; Rappert S; Sun J; Zeng AP
    Appl Environ Microbiol; 2011 Jul; 77(13):4352-60. PubMed ID: 21531824
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rational design of allosteric regulation of homoserine dehydrogenase by a nonnatural inhibitor L-lysine.
    Chen Z; Rappert S; Zeng AP
    ACS Synth Biol; 2015 Feb; 4(2):126-31. PubMed ID: 24344690
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Link between allosteric signal transduction and functional dynamics in a multisubunit enzyme: S-adenosylhomocysteine hydrolase.
    Lee Y; Jeong LS; Choi S; Hyeon C
    J Am Chem Soc; 2011 Dec; 133(49):19807-15. PubMed ID: 22023331
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Purification, crystallization and preliminary X-ray analysis of the regulatory subunit of aspartate kinase from Thermus thermophilus.
    Yoshida A; Tomita T; Kuzuyama T; Nishiyama M
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2007 Feb; 63(Pt 2):96-8. PubMed ID: 17277448
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel organization of ACT domains in allosteric enzymes revealed by the crystal structure of Arabidopsis aspartate kinase.
    Mas-Droux C; Curien G; Robert-Genthon M; Laurencin M; Ferrer JL; Dumas R
    Plant Cell; 2006 Jul; 18(7):1681-92. PubMed ID: 16731588
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exploring the allosteric mechanism of dihydrodipicolinate synthase by reverse engineering of the allosteric inhibitor binding sites and its application for lysine production.
    Geng F; Chen Z; Zheng P; Sun J; Zeng AP
    Appl Microbiol Biotechnol; 2013 Mar; 97(5):1963-71. PubMed ID: 22644522
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural view of the regulatory subunit of aspartate kinase from Mycobacterium tuberculosis.
    Yang Q; Yu K; Yan L; Li Y; Chen C; Li X
    Protein Cell; 2011 Sep; 2(9):745-54. PubMed ID: 21976064
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The structural basis for allosteric inhibition of a threonine-sensitive aspartokinase.
    Liu X; Pavlovsky AG; Viola RE
    J Biol Chem; 2008 Jun; 283(23):16216-25. PubMed ID: 18334478
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structures of R- and T-state Escherichia coli aspartokinase III. Mechanisms of the allosteric transition and inhibition by lysine.
    Kotaka M; Ren J; Lockyer M; Hawkins AR; Stammers DK
    J Biol Chem; 2006 Oct; 281(42):31544-52. PubMed ID: 16905770
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Probing the allosteric mechanism in pyrrolysyl-tRNA synthetase using energy-weighted network formalism.
    Bhattacharyya M; Vishveshwara S
    Biochemistry; 2011 Jul; 50(28):6225-36. PubMed ID: 21650159
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Construction and characterization of R169H mutant of aspartokinase from Corynebacterium pekinense].
    Li H; Zhu Y; Min W; Zhan D; Ren J
    Wei Sheng Wu Xue Bao; 2014 Jun; 54(6):663-9. PubMed ID: 25272815
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of residue 138 in the interdomain hinge region in transmitting allosteric signals for DNA binding in Escherichia coli cAMP receptor protein.
    Yu S; Lee JC
    Biochemistry; 2004 Apr; 43(16):4662-9. PubMed ID: 15096034
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unveiling the intricacies of allosteric regulation in aspartate kinase from the Wolbachia endosymbiont of Brugia Malayi: Mechanistic and therapeutic insights.
    Amala M; Nagarajan H; Ahila M; Nachiappan M; Veerapandiyan M; Vetrivel U; Jeyakanthan J
    Int J Biol Macromol; 2024 May; 267(Pt 1):131326. PubMed ID: 38569988
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.