BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

448 related articles for article (PubMed ID: 24279842)

  • 1. Grafting-responsive miRNAs in cucumber and pumpkin seedlings identified by high-throughput sequencing at whole genome level.
    Li C; Li Y; Bai L; Zhang T; He C; Yan Y; Yu X
    Physiol Plant; 2014 Aug; 151(4):406-22. PubMed ID: 24279842
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ethylene-responsive miRNAs in roots of Medicago truncatula identified by high-throughput sequencing at whole genome level.
    Chen L; Wang T; Zhao M; Zhang W
    Plant Sci; 2012 Mar; 184():14-9. PubMed ID: 22284705
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification and expression profiling of Vigna mungo microRNAs from leaf small RNA transcriptome by deep sequencing.
    Paul S; Kundu A; Pal A
    J Integr Plant Biol; 2014 Jan; 56(1):15-23. PubMed ID: 24138283
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A combined approach of high-throughput sequencing and degradome analysis reveals tissue specific expression of microRNAs and their targets in cucumber.
    Mao W; Li Z; Xia X; Li Y; Yu J
    PLoS One; 2012; 7(3):e33040. PubMed ID: 22479356
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of fruit related microRNAs in cucumber (Cucumis sativus L.) using high-throughput sequencing technology.
    Ye X; Song T; Liu C; Feng H; Liu Z
    Hereditas; 2014 Dec; 151(6):220-8. PubMed ID: 25588308
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genome-wide characterization of rice black streaked dwarf virus-responsive microRNAs in rice leaves and roots by small RNA and degradome sequencing.
    Sun Z; He Y; Li J; Wang X; Chen J
    Plant Cell Physiol; 2015 Apr; 56(4):688-99. PubMed ID: 25535197
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of Taxus microRNAs and their targets with high-throughput sequencing and degradome analysis.
    Hao DC; Yang L; Xiao PG; Liu M
    Physiol Plant; 2012 Dec; 146(4):388-403. PubMed ID: 22708792
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Involvement of metabolic, physiological and hormonal responses in the graft-compatible process of cucumber/pumpkin combinations was revealed through the integrative analysis of mRNA and miRNA expression.
    Ren Y; Xu Q; Wang L; Guo S; Shu S; Lu N; Sun J
    Plant Physiol Biochem; 2018 Aug; 129():368-380. PubMed ID: 29940473
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-throughput sequence analysis of small RNAs in skotomorphogenic seedlings of Brassica rapa ssp. rapa.
    Zhou B; Fan P; Li Y
    Gene; 2014 Sep; 548(1):68-74. PubMed ID: 25016069
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genome-wide identification of turnip mosaic virus-responsive microRNAs in non-heading Chinese cabbage by high-throughput sequencing.
    Wang Z; Jiang D; Zhang C; Tan H; Li Y; Lv S; Hou X; Cui X
    Gene; 2015 Oct; 571(2):178-87. PubMed ID: 26115771
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-throughput deep sequencing shows that microRNAs play important roles in switchgrass responses to drought and salinity stress.
    Xie F; Stewart CN; Taki FA; He Q; Liu H; Zhang B
    Plant Biotechnol J; 2014 Apr; 12(3):354-66. PubMed ID: 24283289
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genome-wide analysis of microRNA targeting impacted by SNPs in cucumber genome.
    Ling J; Luo Z; Liu F; Mao Z; Yang Y; Xie B
    BMC Genomics; 2017 Apr; 18(1):275. PubMed ID: 28376783
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MicroRNAs and their targets in cucumber shoot apices in response to temperature and photoperiod.
    Zhang X; Lai Y; Zhang W; Ahmad J; Qiu Y; Zhang X; Duan M; Liu T; Song J; Wang H; Li X
    BMC Genomics; 2018 Nov; 19(1):819. PubMed ID: 30442111
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pumpkin CmHKT1;1 Controls Shoot Na⁺ Accumulation via Limiting Na⁺ Transport from Rootstock to Scion in Grafted Cucumber.
    Sun J; Cao H; Cheng J; He X; Sohail H; Niu M; Huang Y; Bie Z
    Int J Mol Sci; 2018 Sep; 19(9):. PubMed ID: 30200653
    [TBL] [Abstract][Full Text] [Related]  

  • 15. System analysis of microRNAs in the development and aluminium stress responses of the maize root system.
    Kong X; Zhang M; Xu X; Li X; Li C; Ding Z
    Plant Biotechnol J; 2014 Oct; 12(8):1108-21. PubMed ID: 24985700
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High Throughput Sequencing of Small RNAs in the Two Cucurbita Germplasm with Different Sodium Accumulation Patterns Identifies Novel MicroRNAs Involved in Salt Stress Response.
    Xie J; Lei B; Niu M; Huang Y; Kong Q; Bie Z
    PLoS One; 2015; 10(5):e0127412. PubMed ID: 26010449
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification and Characterization of Novel Maize Mirnas Involved in Different Genetic Background.
    Sheng L; Chai W; Gong X; Zhou L; Cai R; Li X; Zhao Y; Jiang H; Cheng B
    Int J Biol Sci; 2015; 11(7):781-93. PubMed ID: 26078720
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deep sequencing of grapevine flower and berry short RNA library for discovery of novel microRNAs and validation of precise sequences of grapevine microRNAs deposited in miRBase.
    Wang C; Wang X; Kibet NK; Song C; Zhang C; Li X; Han J; Fang J
    Physiol Plant; 2011 Sep; 143(1):64-81. PubMed ID: 21496033
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification and characterization of microRNAs from Chinese pollination constant non-astringent persimmon using high-throughput sequencing.
    Luo Y; Zhang X; Luo Z; Zhang Q; Liu J
    BMC Plant Biol; 2015 Jan; 15():11. PubMed ID: 25604351
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of aluminum-responsive microRNAs in Medicago truncatula by genome-wide high-throughput sequencing.
    Chen L; Wang T; Zhao M; Tian Q; Zhang WH
    Planta; 2012 Feb; 235(2):375-86. PubMed ID: 21909758
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.