These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
203 related articles for article (PubMed ID: 24279989)
1. Second-sphere interactions between the C93-Y157 cross-link and the substrate-bound Fe site influence the O₂ coupling efficiency in mouse cysteine dioxygenase. Li W; Blaesi EJ; Pecore MD; Crowell JK; Pierce BS Biochemistry; 2013 Dec; 52(51):9104-19. PubMed ID: 24279989 [TBL] [Abstract][Full Text] [Related]
2. Kinetic and Spectroscopic Investigation of the Y157F and C93G/Y157F Variants of Cysteine Dioxygenase: Dissecting the Roles of the Second-Sphere Residues C93 and Y157. Miller JR; Schnorrenberg EC; Aschenbrener C; Fox BG; Brunold TC Biochemistry; 2024 Jul; 63(13):1684-1696. PubMed ID: 38885352 [TBL] [Abstract][Full Text] [Related]
3. Spectroscopic and Computational Investigation of the H155A Variant of Cysteine Dioxygenase: Geometric and Electronic Consequences of a Third-Sphere Amino Acid Substitution. Blaesi EJ; Fox BG; Brunold TC Biochemistry; 2015 May; 54(18):2874-84. PubMed ID: 25897562 [TBL] [Abstract][Full Text] [Related]
5. Single turnover of substrate-bound ferric cysteine dioxygenase with superoxide anion: enzymatic reactivation, product formation, and a transient intermediate. Crawford JA; Li W; Pierce BS Biochemistry; 2011 Nov; 50(47):10241-53. PubMed ID: 21992268 [TBL] [Abstract][Full Text] [Related]
6. Characterization of the nitrosyl adduct of substrate-bound mouse cysteine dioxygenase by electron paramagnetic resonance: electronic structure of the active site and mechanistic implications. Pierce BS; Gardner JD; Bailey LJ; Brunold TC; Fox BG Biochemistry; 2007 Jul; 46(29):8569-78. PubMed ID: 17602574 [TBL] [Abstract][Full Text] [Related]
7. Involvement of the Cys-Tyr cofactor on iron binding in the active site of human cysteine dioxygenase. Arjune S; Schwarz G; Belaidi AA Amino Acids; 2015 Jan; 47(1):55-63. PubMed ID: 25261132 [TBL] [Abstract][Full Text] [Related]
8. Probing the Cys-Tyr Cofactor Biogenesis in Cysteine Dioxygenase by the Genetic Incorporation of Fluorotyrosine. Li J; Koto T; Davis I; Liu A Biochemistry; 2019 Apr; 58(17):2218-2227. PubMed ID: 30946568 [TBL] [Abstract][Full Text] [Related]
9. Steady-state substrate specificity and O₂-coupling efficiency of mouse cysteine dioxygenase. Li W; Pierce BS Arch Biochem Biophys; 2015 Jan; 565():49-56. PubMed ID: 25444857 [TBL] [Abstract][Full Text] [Related]
10. The Cys-Tyr cross-link of cysteine dioxygenase changes the optimal pH of the reaction without a structural change. Davies CG; Fellner M; Tchesnokov EP; Wilbanks SM; Jameson GN Biochemistry; 2014 Dec; 53(50):7961-8. PubMed ID: 25390690 [TBL] [Abstract][Full Text] [Related]
11. Oxidative uncoupling in cysteine dioxygenase is gated by a proton-sensitive intermediate. Crowell JK; Li W; Pierce BS Biochemistry; 2014 Dec; 53(48):7541-8. PubMed ID: 25387045 [TBL] [Abstract][Full Text] [Related]
12. Structure-Based Insights into the Role of the Cys-Tyr Crosslink and Inhibitor Recognition by Mammalian Cysteine Dioxygenase. Driggers CM; Kean KM; Hirschberger LL; Cooley RB; Stipanuk MH; Karplus PA J Mol Biol; 2016 Oct; 428(20):3999-4012. PubMed ID: 27477048 [TBL] [Abstract][Full Text] [Related]
13. Shifting redox states of the iron center partitions CDO between crosslink formation or cysteine oxidation. Njeri CW; Ellis HR Arch Biochem Biophys; 2014 Sep; 558():61-9. PubMed ID: 24929188 [TBL] [Abstract][Full Text] [Related]
14. Formation Mechanism of Cofactor Cys-Tyr in the Cysteine Dioxygenases (CDO and F Wang Y; Yan L; Li X; Zhang S; Wei J; Liu Y Inorg Chem; 2021 Jun; 60(11):7844-7856. PubMed ID: 34008401 [TBL] [Abstract][Full Text] [Related]
15. Why do cysteine dioxygenase enzymes contain a 3-His ligand motif rather than a 2His/1Asp motif like most nonheme dioxygenases? de Visser SP; Straganz GD J Phys Chem A; 2009 Mar; 113(9):1835-46. PubMed ID: 19199799 [TBL] [Abstract][Full Text] [Related]
16. Cysteine dioxygenase structures from pH4 to 9: consistent cys-persulfenate formation at intermediate pH and a Cys-bound enzyme at higher pH. Driggers CM; Cooley RB; Sankaran B; Hirschberger LL; Stipanuk MH; Karplus PA J Mol Biol; 2013 Sep; 425(17):3121-36. PubMed ID: 23747973 [TBL] [Abstract][Full Text] [Related]
17. Spectroscopic and computational studies of reversible O Fischer AA; Lindeman SV; Fiedler AT Dalton Trans; 2017 Oct; 46(39):13229-13241. PubMed ID: 28686274 [TBL] [Abstract][Full Text] [Related]
18. Synthesis of amino acid cofactor in cysteine dioxygenase is regulated by substrate and represents a novel post-translational regulation of activity. Dominy JE; Hwang J; Guo S; Hirschberger LL; Zhang S; Stipanuk MH J Biol Chem; 2008 May; 283(18):12188-201. PubMed ID: 18308719 [TBL] [Abstract][Full Text] [Related]
19. The 3-His Metal Coordination Site Promotes the Coupling of Oxygen Activation to Cysteine Oxidation in Cysteine Dioxygenase. Forbes DL; Meneely KM; Chilton AS; Lamb AL; Ellis HR Biochemistry; 2020 Jun; 59(21):2022-2031. PubMed ID: 32368901 [TBL] [Abstract][Full Text] [Related]
20. A Single DNA Point Mutation Leads to the Formation of a Cysteine-Tyrosine Crosslink in the Cysteine Dioxygenase from Schultz RL; Sabat G; Fox BG; Brunold TC Biochemistry; 2023 Jun; 62(12):1964-1975. PubMed ID: 37285547 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]