These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
321 related articles for article (PubMed ID: 24280245)
1. BMP activation and Wnt-signalling affect biochemistry and functional biomechanical properties of cartilage tissue engineering constructs. Krase A; Abedian R; Steck E; Hurschler C; Richter W Osteoarthritis Cartilage; 2014 Feb; 22(2):284-92. PubMed ID: 24280245 [TBL] [Abstract][Full Text] [Related]
2. Bone morphogenetic proteins-2, -12, and -13 modulate in vitro development of engineered cartilage. Gooch KJ; Blunk T; Courter DL; Sieminski AL; Vunjak-Novakovic G; Freed LE Tissue Eng; 2002 Aug; 8(4):591-601. PubMed ID: 12201999 [TBL] [Abstract][Full Text] [Related]
3. Influence of bone morphogenetic protein-2 on the extracellular matrix, material properties, and gene expression of long-term articular chondrocyte cultures: loss of chondrocyte stability. Krawczak DA; Westendorf JJ; Carlson CS; Lewis JL Tissue Eng Part A; 2009 Jun; 15(6):1247-55. PubMed ID: 18950256 [TBL] [Abstract][Full Text] [Related]
4. The effects of glycosaminoglycan content on the compressive modulus of cartilage engineered in type II collagen scaffolds. Pfeiffer E; Vickers SM; Frank E; Grodzinsky AJ; Spector M Osteoarthritis Cartilage; 2008 Oct; 16(10):1237-44. PubMed ID: 18406634 [TBL] [Abstract][Full Text] [Related]
5. Bone morphogenetic protein (BMP)-2 enhances the expression of type II collagen and aggrecan in chondrocytes embedded in alginate beads. Gründer T; Gaissmaier C; Fritz J; Stoop R; Hortschansky P; Mollenhauer J; Aicher WK Osteoarthritis Cartilage; 2004 Jul; 12(7):559-67. PubMed ID: 15219571 [TBL] [Abstract][Full Text] [Related]
6. [Experimental study on adipose-derived stem cells transfected by bone morphogenetic protein 14 co-culture with chondrocytes]. Yuan H; Zhang J; Zhang R Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2013 Mar; 27(3):353-7. PubMed ID: 23672140 [TBL] [Abstract][Full Text] [Related]
7. Chondrogenic differentiation of adipose-derived adult stem cells by a porous scaffold derived from native articular cartilage extracellular matrix. Cheng NC; Estes BT; Awad HA; Guilak F Tissue Eng Part A; 2009 Feb; 15(2):231-41. PubMed ID: 18950290 [TBL] [Abstract][Full Text] [Related]
8. Induction of chondrogenesis from human embryonic stem cells without embryoid body formation by bone morphogenetic protein 7 and transforming growth factor beta1. Nakagawa T; Lee SY; Reddi AH Arthritis Rheum; 2009 Dec; 60(12):3686-92. PubMed ID: 19950276 [TBL] [Abstract][Full Text] [Related]
9. The inductive effect of bone morphogenetic protein-4 on chondral-lineage differentiation and in situ cartilage repair. Jiang Y; Chen LK; Zhu DC; Zhang GR; Guo C; Qi YY; Ouyang HW Tissue Eng Part A; 2010 May; 16(5):1621-32. PubMed ID: 20001220 [TBL] [Abstract][Full Text] [Related]
10. Nims RJ; Cigan AD; Durney KM; Jones BK; O'Neill JD; Law WA; Vunjak-Novakovic G; Hung CT; Ateshian GA Tissue Eng Part A; 2017 Aug; 23(15-16):847-858. PubMed ID: 28193145 [TBL] [Abstract][Full Text] [Related]
11. Extracellular matrix content and WNT/β-catenin levels of cartilage determine the chondrocyte response to compressive load. Praxenthaler H; Krämer E; Weisser M; Hecht N; Fischer J; Grossner T; Richter W Biochim Biophys Acta Mol Basis Dis; 2018 Mar; 1864(3):851-859. PubMed ID: 29277327 [TBL] [Abstract][Full Text] [Related]
12. [An in vitro study on three-dimensional cultivation with dynamic compressive stimulation for cartilage tissue engineering]. Wang Yongcheng ; Meng H; Yuan Xueling ; Peng J; Guo Q; Lu S; Wang A Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2014 Sep; 28(9):1145-9. PubMed ID: 25509782 [TBL] [Abstract][Full Text] [Related]
14. Effects of FGF-2 and IGF-1 on adult canine articular chondrocytes in type II collagen-glycosaminoglycan scaffolds in vitro. Veilleux N; Spector M Osteoarthritis Cartilage; 2005 Apr; 13(4):278-86. PubMed ID: 15780641 [TBL] [Abstract][Full Text] [Related]
15. Properties of cartilage engineered from elderly human chondrocytes for articular surface repair. Zhao X; Bichara DA; Ballyns FP; Yoo JJ; Ong W; Randolph MA; Bonassar LJ; Gill TJ Tissue Eng Part A; 2012 Jul; 18(13-14):1490-9. PubMed ID: 22435677 [TBL] [Abstract][Full Text] [Related]
16. Polymer scaffolds fabricated with pore-size gradients as a model for studying the zonal organization within tissue-engineered cartilage constructs. Woodfield TB; Van Blitterswijk CA; De Wijn J; Sims TJ; Hollander AP; Riesle J Tissue Eng; 2005; 11(9-10):1297-311. PubMed ID: 16259586 [TBL] [Abstract][Full Text] [Related]
17. Additive manufacturing of an elastic poly(ester)urethane for cartilage tissue engineering. Camarero-Espinosa S; Calore A; Wilbers A; Harings J; Moroni L Acta Biomater; 2020 Jan; 102():192-204. PubMed ID: 31778830 [TBL] [Abstract][Full Text] [Related]
18. Enhanced matrix synthesis and in vitro formation of cartilage-like tissue by genetically modified chondrocytes expressing BMP-7. Hidaka C; Quitoriano M; Warren RF; Crystal RG J Orthop Res; 2001 Sep; 19(5):751-8. PubMed ID: 11562118 [TBL] [Abstract][Full Text] [Related]
20. Dynamic regulation of bone morphogenetic proteins in engineered osteochondral constructs by biomechanical stimulation. Nam J; Perera P; Rath B; Agarwal S Tissue Eng Part A; 2013 Mar; 19(5-6):783-92. PubMed ID: 23198877 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]