These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

71 related articles for article (PubMed ID: 24281297)

  • 1. Enhanced reversibility and durability of a solid oxide Fe-air redox battery by carbothermic reaction derived energy storage materials.
    Zhao X; Li X; Gong Y; Huang K
    Chem Commun (Camb); 2014 Jan; 50(5):623-5. PubMed ID: 24281297
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proton-Mediated and Ir-Catalyzed Iron/Iron-Oxide Redox Kinetics for Enhanced Rechargeability and Durability of Solid Oxide Iron-Air Battery.
    Tang Q; Morey C; Zhang Y; Xu N; Sun S; Huang K
    Adv Sci (Weinh); 2022 Oct; 9(30):e2203768. PubMed ID: 36031393
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A high energy density all solid-state tungsten-air battery.
    Zhao X; Li X; Gong Y; Xu N; Romito K; Huang K
    Chem Commun (Camb); 2013 Jun; 49(47):5357-9. PubMed ID: 23646350
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-energy redox-flow batteries with hybrid metal foam electrodes.
    Park MS; Lee NJ; Lee SW; Kim KJ; Oh DJ; Kim YJ
    ACS Appl Mater Interfaces; 2014 Jul; 6(13):10729-35. PubMed ID: 24906030
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High capacity of an Fe-air rechargeable battery using LaGaO3-based oxide ion conductor as an electrolyte.
    Inoishi A; Ida S; Uratani S; Okano T; Ishihara T
    Phys Chem Chem Phys; 2012 Oct; 14(37):12818-22. PubMed ID: 22880205
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Li-ion rechargeable battery: a perspective.
    Goodenough JB; Park KS
    J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MOF-derived iron as an active energy storage material for intermediate-temperature solid oxide iron-air redox batteries.
    Zhang C; Huang K
    Chem Commun (Camb); 2017 Sep; 53(76):10564-10567. PubMed ID: 28894875
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Combination of lightweight elements and nanostructured materials for batteries.
    Chen J; Cheng F
    Acc Chem Res; 2009 Jun; 42(6):713-23. PubMed ID: 19354236
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhancing pseudocapacitive charge storage in polymer templated mesoporous materials.
    Rauda IE; Augustyn V; Dunn B; Tolbert SH
    Acc Chem Res; 2013 May; 46(5):1113-24. PubMed ID: 23485203
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Site-specific transition metal occupation in multicomponent pyrophosphate for improved electrochemical and thermal properties in lithium battery cathodes: a combined experimental and theoretical study.
    Shakoor RA; Kim H; Cho W; Lim SY; Song H; Lee JW; Kang JK; Kim YT; Jung Y; Choi JW
    J Am Chem Soc; 2012 Jul; 134(28):11740-8. PubMed ID: 22720717
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reversible chemical delithiation/lithiation of LiFePO4: towards a redox flow lithium-ion battery.
    Huang Q; Li H; Grätzel M; Wang Q
    Phys Chem Chem Phys; 2013 Feb; 15(6):1793-7. PubMed ID: 23262995
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Self-recovery of Pd nanoparticles that were dispersed over La(Sr)Fe(Mn)O3 for intelligent oxide anodes of solid-oxide fuel cells.
    Shin TH; Okamoto Y; Ida S; Ishihara T
    Chemistry; 2012 Sep; 18(37):11695-702. PubMed ID: 22865585
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanosizing and nanoconfinement: new strategies towards meeting hydrogen storage goals.
    de Jongh PE; Adelhelm P
    ChemSusChem; 2010 Dec; 3(12):1332-48. PubMed ID: 21080405
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel alkaline redox couple: chemistry of the Fe(6+)/B(2-) super-iron boride battery.
    Licht S; Yu X; Qu D
    Chem Commun (Camb); 2007 Jul; (26):2753-5. PubMed ID: 17594043
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lithium insertion in nanostructured TiO(2)(B) architectures.
    Dylla AG; Henkelman G; Stevenson KJ
    Acc Chem Res; 2013 May; 46(5):1104-12. PubMed ID: 23425042
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Something from nothing: enhancing electrochemical charge storage with cation vacancies.
    Hahn BP; Long JW; Rolison DR
    Acc Chem Res; 2013 May; 46(5):1181-91. PubMed ID: 22642490
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A new high-energy cathode for a Na-ion battery with ultrahigh stability.
    Park YU; Seo DH; Kwon HS; Kim B; Kim J; Kim H; Kim I; Yoo HI; Kang K
    J Am Chem Soc; 2013 Sep; 135(37):13870-8. PubMed ID: 23952799
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nitrite reduction with hydrous ferric oxide and Fe(II): stoichiometry, rate, and mechanism.
    Tai YL; Dempsey BA
    Water Res; 2009 Feb; 43(2):546-52. PubMed ID: 19081595
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recent advances in first principles computational research of cathode materials for lithium-ion batteries.
    Meng YS; Arroyo-de Dompablo ME
    Acc Chem Res; 2013 May; 46(5):1171-80. PubMed ID: 22489876
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Theory of chemical kinetics and charge transfer based on nonequilibrium thermodynamics.
    Bazant MZ
    Acc Chem Res; 2013 May; 46(5):1144-60. PubMed ID: 23520980
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.