These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 24281430)
21. Suction feeding across fish life stages: flow dynamics from larvae to adults and implications for prey capture. Yaniv S; Elad D; Holzman R J Exp Biol; 2014 Oct; 217(Pt 20):3748-57. PubMed ID: 25189373 [TBL] [Abstract][Full Text] [Related]
22. Mechanisms and feasibility of prey capture in ambush-feeding zooplankton. Kiørboe T; Andersen A; Langlois VJ; Jakobsen HH; Bohr T Proc Natl Acad Sci U S A; 2009 Jul; 106(30):12394-9. PubMed ID: 19622725 [TBL] [Abstract][Full Text] [Related]
23. Suction is kid's play: extremely fast suction in newborn seahorses. Van Wassenbergh S; Roos G; Genbrugge A; Leysen H; Aerts P; Adriaens D; Herrel A Biol Lett; 2009 Apr; 5(2):200-3. PubMed ID: 19324657 [TBL] [Abstract][Full Text] [Related]
25. Musculoskeletal structure of the feeding system and implications of snout elongation in Hippocampus reidi and Dunckerocampus dactyliophorus. Leysen H; Christiaens J; De Kegel B; Boone MN; Van Hoorebeke L; Adriaens D J Fish Biol; 2011 Jun; 78(6):1799-823. PubMed ID: 21651529 [TBL] [Abstract][Full Text] [Related]
26. Prey fish escape by sensing the bow wave of a predator. Stewart WJ; Nair A; Jiang H; McHenry MJ J Exp Biol; 2014 Dec; 217(Pt 24):4328-36. PubMed ID: 25520384 [TBL] [Abstract][Full Text] [Related]
27. Prey detection and prey capture in copepod nauplii. Bruno E; Andersen Borg CM; Kiørboe T PLoS One; 2012; 7(10):e47906. PubMed ID: 23144712 [TBL] [Abstract][Full Text] [Related]
32. Elastic energy storage in seahorses leads to a unique suction flow dynamics compared with other actinopterygians. Avidan C; Holzman R J Exp Biol; 2021 Sep; 224(17):. PubMed ID: 34477206 [TBL] [Abstract][Full Text] [Related]
33. Mechanics of snout expansion in suction-feeding seahorses: musculoskeletal force transmission. Van Wassenbergh S; Leysen H; Adriaens D; Aerts P J Exp Biol; 2013 Feb; 216(Pt 3):407-17. PubMed ID: 23038729 [TBL] [Abstract][Full Text] [Related]
34. Hydrodynamic Simulations of the Performance Landscape for Suction-Feeding Fishes Reveal Multiple Peaks for Different Prey Types. Olsson KH; Martin CH; Holzman R Integr Comp Biol; 2020 Nov; 60(5):1251-1267. PubMed ID: 32333778 [TBL] [Abstract][Full Text] [Related]
36. Prey detection in a cruising copepod. Kjellerup S; Kiørboe T Biol Lett; 2012 Jun; 8(3):438-41. PubMed ID: 22158738 [TBL] [Abstract][Full Text] [Related]
37. Going with the flow: hydrodynamic cues trigger directed escapes from a stalking predator. Tuttle LJ; Robinson HE; Takagi D; Strickler JR; Lenz PH; Hartline DK J R Soc Interface; 2019 Feb; 16(151):20180776. PubMed ID: 30958200 [TBL] [Abstract][Full Text] [Related]
38. The hydrodynamic regime drives flow reversals in suction-feeding larval fishes during early ontogeny. Krishnan K; Nafi AS; Gurka R; Holzman R J Exp Biol; 2020 May; 223(Pt 9):. PubMed ID: 32253288 [TBL] [Abstract][Full Text] [Related]
39. Morphological and behavioral limit of visual resolution in temperate (Hippocampus abdominalis) and tropical (Hippocampus taeniopterus) seahorses. Lee HR; O'Brien KM Vis Neurosci; 2011 Jul; 28(4):351-60. PubMed ID: 21838936 [TBL] [Abstract][Full Text] [Related]
40. Feast or flee: bioelectrical regulation of feeding and predator evasion behaviors in the planktonic alveolate Favella sp. (Spirotrichia). Echevarria ML; Wolfe GV; Taylor AR J Exp Biol; 2016 Feb; 219(Pt 3):445-56. PubMed ID: 26567352 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]