These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
180 related articles for article (PubMed ID: 24281503)
1. Photothermal nonlinearity and optical bistability in a graphene-silicon waveguide resonator. Horvath C; Bachman D; Indoe R; Van V Opt Lett; 2013 Dec; 38(23):5036-9. PubMed ID: 24281503 [TBL] [Abstract][Full Text] [Related]
2. Analytical study of optical bistability in silicon-waveguide resonators. Rukhlenko ID; Premaratne M; Agrawal GP Opt Express; 2009 Nov; 17(24):22124-37. PubMed ID: 19997459 [TBL] [Abstract][Full Text] [Related]
3. Nonlinear Fabry-Perot resonator with a silicon photonic crystal waveguide. Ikeda K; Fainman Y Opt Lett; 2006 Dec; 31(23):3486-8. PubMed ID: 17099758 [TBL] [Abstract][Full Text] [Related]
4. Analytical study of optical bistability in silicon ring resonators. Rukhlenko ID; Premaratne M; Agrawal GP Opt Lett; 2010 Jan; 35(1):55-7. PubMed ID: 20664671 [TBL] [Abstract][Full Text] [Related]
5. Nonlinear heating and scattering in a single crystalline silicon nanostructure. Li CH; Tang YL; Takahara J; Chu SW J Chem Phys; 2021 Nov; 155(20):204202. PubMed ID: 34852492 [TBL] [Abstract][Full Text] [Related]
6. Cavity-enhanced thermo-optic bistability and hysteresis in a graphene-on-Si Gao Y; Zhou W; Sun X; Tsang HK; Shu C Opt Lett; 2017 May; 42(10):1950-1953. PubMed ID: 28504767 [TBL] [Abstract][Full Text] [Related]
7. Enhanced parametric frequency conversion in a compact silicon-graphene microring resonator. Ji M; Cai H; Deng L; Huang Y; Huang Q; Xia J; Li Z; Yu J; Wang Y Opt Express; 2015 Jul; 23(14):18679-85. PubMed ID: 26191927 [TBL] [Abstract][Full Text] [Related]
8. Optical multistability in a silicon-core silica-cladding fiber. Temnykh IA; Baril NF; Liu Z; Badding JV; Gopalan V Opt Express; 2010 Mar; 18(5):5305-13. PubMed ID: 20389543 [TBL] [Abstract][Full Text] [Related]
11. Tuning the nonlinearity of graphene mechanical resonators by Joule heating. Suo JJ; Li WJ; Cheng ZD; Zhao ZF; Chen H; Li BL; Zhou Q; Wang Y; Song HZ; Niu XB; Deng GW J Phys Condens Matter; 2022 Jul; 34(37):. PubMed ID: 35779515 [TBL] [Abstract][Full Text] [Related]
12. All-plasmonic switching based on thermal nonlinearity in a polymer plasmonic microring resonator. Perron D; Wu M; Horvath C; Bachman D; Van V Opt Lett; 2011 Jul; 36(14):2731-3. PubMed ID: 21765524 [TBL] [Abstract][Full Text] [Related]
13. Low-power optical bistability in a free-standing silicon ring resonator. Sun P; Reano RM Opt Lett; 2010 Apr; 35(8):1124-6. PubMed ID: 20410940 [TBL] [Abstract][Full Text] [Related]
14. Ultra-Broadband Nonlinearity Enhancement based on a Novel Graphene-Silicon Hybrid Waveguide: Structure Design and Theoretical Analysis. Jin Q; Li X; Chen J; Gao S Sci Rep; 2017 Sep; 7(1):12290. PubMed ID: 28947827 [TBL] [Abstract][Full Text] [Related]
15. Optical bistability in metal-insulator-metal plasmonic waveguide with nanodisk resonator containing Kerr nonlinear medium. Wang G; Lu H; Liu X; Gong Y; Wang L Appl Opt; 2011 Sep; 50(27):5287-90. PubMed ID: 21947047 [TBL] [Abstract][Full Text] [Related]
16. Silicon photonic temperature sensor employing a ring resonator manufactured using a standard CMOS process. Kim GD; Lee HS; Park CH; Lee SS; Lim BT; Bae HK; Lee WG Opt Express; 2010 Oct; 18(21):22215-21. PubMed ID: 20941123 [TBL] [Abstract][Full Text] [Related]