These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 24281528)

  • 1. Optical trapping of red blood cells in living animals with a water immersion objective.
    Zhong MC; Gong L; Zhou JH; Wang ZQ; Li YM
    Opt Lett; 2013 Dec; 38(23):5134-7. PubMed ID: 24281528
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aberration compensation for optical trapping of cells within living mice.
    Zhong MC; Wang ZQ; Li YM
    Appl Opt; 2017 Mar; 56(7):1972-1976. PubMed ID: 28248397
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of immersion oil in optical tweezers.
    Mahmoudi A; Reihani SN
    Opt Express; 2011 Aug; 19(16):14794-800. PubMed ID: 21934840
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Measurement of the trapping efficiency of an elliptical optical trap with rigid and elastic objects.
    Kauppila A; Kinnunen M; Karmenyan A; Myllylä R
    Appl Opt; 2012 Aug; 51(23):5705-12. PubMed ID: 22885584
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Under-filling trapping objectives optimizes the use of the available laser power in optical tweezers.
    Mahamdeh M; Campos CP; Schäffer E
    Opt Express; 2011 Jun; 19(12):11759-68. PubMed ID: 21716408
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optical trapping and manipulation of single cells using infrared laser beams.
    Ashkin A; Dziedzic JM; Yamane T
    Nature; 1987 Dec 24-31; 330(6150):769-71. PubMed ID: 3320757
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Femtosecond laser fabricated monolithic chip for optical trapping and stretching of single cells.
    Bellini N; Vishnubhatla KC; Bragheri F; Ferrara L; Minzioni P; Ramponi R; Cristiani I; Osellame R
    Opt Express; 2010 Mar; 18(5):4679-88. PubMed ID: 20389480
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Physics of optical tweezers.
    Nieminen TA; Knöner G; Heckenberg NR; Rubinsztein-Dunlop H
    Methods Cell Biol; 2007; 82():207-36. PubMed ID: 17586258
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Trapping red blood cells in living animals using optical tweezers.
    Zhong MC; Wei XB; Zhou JH; Wang ZQ; Li YM
    Nat Commun; 2013; 4():1768. PubMed ID: 23612309
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optical clearing at cellular level.
    Kinnunen M; Bykov AV; Tuorila J; Haapalainen T; Karmenyan AV; Tuchin VV
    J Biomed Opt; 2014 Jul; 19(7):71409. PubMed ID: 24615672
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermal processes in red blood cells exposed to infrared laser tweezers (λ = 1064 nm).
    Krasnikov I; Seteikin A; Bernhardt I
    J Biophotonics; 2011 Mar; 4(3):206-12. PubMed ID: 20680975
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanical characterization of human red blood cells under different osmotic conditions by robotic manipulation with optical tweezers.
    Tan Y; Sun D; Wang J; Huang W
    IEEE Trans Biomed Eng; 2010 Jul; 57(7):1816-25. PubMed ID: 20176536
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Radiation pressure on a biconcave human Red Blood Cell and the resulting deformation in a pair of parallel optical traps.
    Liao GB; Chen YQ; Bareil PB; Sheng Y; Chiou A; Chang MS
    J Biophotonics; 2014 Oct; 7(10):782-7. PubMed ID: 23740841
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fourier optics along a hybrid optical fiber for Bessel-like beam generation and its applications in multiple-particle trapping.
    Kim J; Jeong Y; Lee S; Ha W; Shin JS; Oh K
    Opt Lett; 2012 Feb; 37(4):623-5. PubMed ID: 22344127
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ray Optics Model for Optical Trapping of Biconcave Red Blood Cells.
    Tognato R; Jones PH
    Micromachines (Basel); 2022 Dec; 14(1):. PubMed ID: 36677144
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optical orientation and rotation of trapped red blood cells with Laguerre-Gaussian mode.
    Dasgupta R; Ahlawat S; Verma RS; Gupta PK
    Opt Express; 2011 Apr; 19(8):7680-8. PubMed ID: 21503077
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Numerical analysis for transverse microbead trapping using 30 MHz focused ultrasound in ray acoustics regime.
    Lee J
    Ultrasonics; 2014 Jan; 54(1):11-9. PubMed ID: 23809757
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel single-cell functional analysis of red blood cells using laser tweezers Raman spectroscopy: application for sickle cell disease.
    Liu R; Mao Z; Matthews DL; Li CS; Chan JW; Satake N
    Exp Hematol; 2013 Jul; 41(7):656-661.e1. PubMed ID: 23537725
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Observation of the binary coalescence and equilibration of micrometer-sized droplets of aqueous aerosol in a single-beam gradient-force optical trap.
    Power R; Reid JP; Anand S; McGloin D; Almohammedi A; Mistry NS; Hudson AJ
    J Phys Chem A; 2012 Sep; 116(35):8873-84. PubMed ID: 22867108
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optical trapping and propulsion of red blood cells on waveguide surfaces.
    Ahluwalia BS; McCourt P; Huser T; Hellesø OG
    Opt Express; 2010 Sep; 18(20):21053-61. PubMed ID: 20941001
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.