These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 24281528)

  • 21. Optical trapping and propulsion of red blood cells on waveguide surfaces.
    Ahluwalia BS; McCourt P; Huser T; Hellesø OG
    Opt Express; 2010 Sep; 18(20):21053-61. PubMed ID: 20941001
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Silicon-on-insulator multimode-interference waveguide-based arrayed optical tweezers (SMART) for two-dimensional microparticle trapping and manipulation.
    Lei T; Poon AW
    Opt Express; 2013 Jan; 21(2):1520-30. PubMed ID: 23389134
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Optical trap for both transparent and absorbing particles in air using a single shaped laser beam.
    Redding B; Pan YL
    Opt Lett; 2015 Jun; 40(12):2798-801. PubMed ID: 26076265
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Photothermal trapping of dielectric particles by optical fiber-ring.
    Xin H; Lei H; Zhang Y; Li X; Li B
    Opt Express; 2011 Jan; 19(3):2711-9. PubMed ID: 21369092
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Optical guiding-based cell focusing for Raman flow cell cytometer.
    Verma RS; Ahlawat S; Uppal A
    Analyst; 2018 May; 143(11):2648-2655. PubMed ID: 29756139
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Tomographic imaging of a suspending single live cell using optical tweezer-combined full-field optical coherence tomography.
    Choi WJ; Park KS; Eom TJ; Oh MK; Lee BH
    Opt Lett; 2012 Jul; 37(14):2784-6. PubMed ID: 22825133
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Photothermal delivery of microscopic objects via convection flows induced by laser beam from fiber tip.
    Liao D; Yu H; Zhang Y; Li B
    Appl Opt; 2011 Jul; 50(20):3711-6. PubMed ID: 21743585
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Development of a dual joystick-controlled laser trapping and cutting system for optical micromanipulation of chromosomes inside living cells.
    Harsono MS; Zhu Q; Shi LZ; Duquette M; Berns MW
    J Biophotonics; 2013 Feb; 6(2):197-204. PubMed ID: 22517735
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Dynamic deformation of red blood cell in dual-trap optical tweezers.
    Rancourt-Grenier S; Wei MT; Bai JJ; Chiou A; Bareil PP; Duval PL; Sheng Y
    Opt Express; 2010 May; 18(10):10462-72. PubMed ID: 20588900
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The study of cells by optical trapping and manipulation of living cells using infrared laser beams.
    Ashkin A
    ASGSB Bull; 1991 Jul; 4(2):133-46. PubMed ID: 11537176
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Multi-beam bilateral teleoperation of holographic optical tweezers.
    Onda K; Arai F
    Opt Express; 2012 Feb; 20(4):3633-41. PubMed ID: 22418122
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Optical trapping forces for colloids at the oil-water interface.
    Park BJ; Furst EM
    Langmuir; 2008 Dec; 24(23):13383-92. PubMed ID: 18980357
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Laser trap ionization for identification of human erythrocytes with variable hemoglobin quantitation.
    Kelley M; Cooper J; Devito D; Mushi R; Aguinaga MDP; Erenso DB
    J Biomed Opt; 2018 May; 23(5):1-10. PubMed ID: 29851330
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Measurement of elastic light scattering from two optically trapped microspheres and red blood cells in a transparent medium.
    Kinnunen M; Kauppila A; Karmenyan A; Myllylä R
    Opt Lett; 2011 Sep; 36(18):3554-6. PubMed ID: 21931388
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Massive photothermal trapping and migration of particles by a tapered optical fiber.
    Xin H; Li X; Li B
    Opt Express; 2011 Aug; 19(18):17065-74. PubMed ID: 21935067
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Three-dimensional light-scattering and deformation of individual biconcave human blood cells in optical tweezers.
    Yu L; Sheng Y; Chiou A
    Opt Express; 2013 May; 21(10):12174-84. PubMed ID: 23736438
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Optical trapping of micrometer-sized dielectric particles by cylindrical vector beams.
    Kozawa Y; Sato S
    Opt Express; 2010 May; 18(10):10828-33. PubMed ID: 20588937
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Comparison of silicon photonic crystal resonator designs for optical trapping of nanomaterials.
    Serey X; Mandal S; Erickson D
    Nanotechnology; 2010 Jul; 21(30):305202. PubMed ID: 20603537
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Optical trapping and spectroscopic characterisation of ionic liquid solutions.
    Moore LJ; Summers MD; Ritchie GA
    Phys Chem Chem Phys; 2013 Aug; 15(32):13489-98. PubMed ID: 23824264
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Nonlinear self-trapping and guiding of light at different wavelengths with sheep blood.
    Perez N; Chambers J; Chen Z; Bezryadina A
    Opt Lett; 2021 Feb; 46(3):629-632. PubMed ID: 33528426
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.