These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
169 related articles for article (PubMed ID: 24281681)
21. Serpentine endophytic bacterium Pseudomonas azotoformans ASS1 accelerates phytoremediation of soil metals under drought stress. Ma Y; Rajkumar M; Moreno A; Zhang C; Freitas H Chemosphere; 2017 Oct; 185():75-85. PubMed ID: 28686889 [TBL] [Abstract][Full Text] [Related]
22. Isolation, characterization, and selection of heavy metal-resistant and plant growth-promoting endophytic bacteria from root nodules of Robinia pseudoacacia in a Pb/Zn mining area. Fan M; Liu Z; Nan L; Wang E; Chen W; Lin Y; Wei G Microbiol Res; 2018 Dec; 217():51-59. PubMed ID: 30384908 [TBL] [Abstract][Full Text] [Related]
23. Isolation and Characterization of Pb-Solubilizing Bacteria and Their Effects on Pb Uptake by Yahaghi Z; Shirvani M; Nourbakhsh F; de la Peña TC; Pueyo JJ; Talebi M J Microbiol Biotechnol; 2018 Jul; 28(7):1156-1167. PubMed ID: 29975995 [TBL] [Abstract][Full Text] [Related]
24. Plant growth promoting potential of bacteria isolated on N free media from rhizosphere of Cassia occidentalis. Arun B; Gopinath B; Sharma S World J Microbiol Biotechnol; 2012 Sep; 28(9):2849-57. PubMed ID: 22806725 [TBL] [Abstract][Full Text] [Related]
25. Inoculation with Metal-Mobilizing Plant-Growth-Promoting Rhizobacterium Bacillus sp. SC2b and Its Role in Rhizoremediation. Ma Y; Oliveira RS; Wu L; Luo Y; Rajkumar M; Rocha I; Freitas H J Toxicol Environ Health A; 2015; 78(13-14):931-44. PubMed ID: 26167758 [TBL] [Abstract][Full Text] [Related]
26. Characterization of bacterial communities associated with the exotic and heavy metal tolerant wetland plant Spartina alterniflora. Yang Y; Ding J; Chi Y; Yuan J Sci Rep; 2020 Oct; 10(1):17985. PubMed ID: 33093514 [TBL] [Abstract][Full Text] [Related]
27. Diversity and Distribution of Heavy Metal-Resistant Bacteria in Polluted Sediments of the Araça Bay, São Sebastião (SP), and the Relationship Between Heavy Metals and Organic Matter Concentrations. Zampieri Bdel B; Pinto AB; Schultz L; de Oliveira MA; de Oliveira AJ Microb Ecol; 2016 Oct; 72(3):582-94. PubMed ID: 27480227 [TBL] [Abstract][Full Text] [Related]
28. Influence of Spartina alterniflora on the mobility of heavy metals in salt marsh sediments of the Yangtze River Estuary, China. Wang Y; Zhou L; Zheng X; Qian P; Wu Y Environ Sci Pollut Res Int; 2013 Mar; 20(3):1675-85. PubMed ID: 22821343 [TBL] [Abstract][Full Text] [Related]
29. Heavy metal accumulation in Lathyrus sativus growing in contaminated soils and identification of symbiotic resistant bacteria. Abdelkrim S; Jebara SH; Saadani O; Chiboub M; Abid G; Mannai K; Jebara M Arch Microbiol; 2019 Jan; 201(1):107-121. PubMed ID: 30276423 [TBL] [Abstract][Full Text] [Related]
30. Analysis of the Genome of the Heavy Metal Resistant and Hydrocarbon-Degrading Rhizospheric Chlebek D; Płociniczak T; Gobetti S; Kumor A; Hupert-Kocurek K; Pacwa-Płociniczak M Int J Mol Sci; 2021 Dec; 23(1):. PubMed ID: 35008639 [TBL] [Abstract][Full Text] [Related]
31. Spatial variation and toxicity assessment for heavy metals in sediments of intertidal zone in a typical subtropical estuary (Min River) of China. Sun Z; Li J; He T; Ren P; Zhu H; Gao H; Tian L; Hu X Environ Sci Pollut Res Int; 2017 Oct; 24(29):23080-23095. PubMed ID: 28825222 [TBL] [Abstract][Full Text] [Related]
32. Impacts of heavy metal contamination and phytoremediation on a microbial community during a twelve-month microcosm experiment. Gremion F; Chatzinotas A; Kaufmann K; Von Sigler W; Harms H FEMS Microbiol Ecol; 2004 May; 48(2):273-83. PubMed ID: 19712410 [TBL] [Abstract][Full Text] [Related]
33. Characterization of efficient plant-growth-promoting bacteria isolated from Sulla coronaria resistant to cadmium and to other heavy metals. Chiboub M; Saadani O; Fatnassi IC; Abdelkrim S; Abid G; Jebara M; Jebara SH C R Biol; 2016; 339(9-10):391-8. PubMed ID: 27498183 [TBL] [Abstract][Full Text] [Related]
34. Uptake and accumulation of metals in Spartina alterniflora salt marshes from a South American estuary. Negrin VL; Botté SE; La Colla NS; Marcovecchio JE Sci Total Environ; 2019 Feb; 649():808-820. PubMed ID: 30176491 [TBL] [Abstract][Full Text] [Related]
35. Survey of Plant Growth-Promoting Mechanisms in Native Portuguese Chickpea Mesorhizobium Isolates. Brígido C; Glick BR; Oliveira S Microb Ecol; 2017 May; 73(4):900-915. PubMed ID: 27904921 [TBL] [Abstract][Full Text] [Related]
36. Aluminium resistant, plant growth promoting bacteria induce overexpression of Aluminium stress related genes in Arabidopsis thaliana and increase the ginseng tolerance against Aluminium stress. Farh ME; Kim YJ; Sukweenadhi J; Singh P; Yang DC Microbiol Res; 2017 Jul; 200():45-52. PubMed ID: 28527763 [TBL] [Abstract][Full Text] [Related]
37. Effect of rhizospheric inoculation of isolated arsenic (As) tolerant strains on growth, As-uptake and bacterial communities in association with Adiantum capillus-veneris. Marwa N; Mishra N; Singh N; Mishra A; Saxena G; Pandey V; Singh N Ecotoxicol Environ Saf; 2020 Jun; 196():110498. PubMed ID: 32247957 [TBL] [Abstract][Full Text] [Related]
38. Arsenic and mercury tolerant rhizobacteria that can improve phytoremediation of heavy metal contaminated soils. Rojas-Solis D; Larsen J; Lindig-Cisneros R PeerJ; 2023; 11():e14697. PubMed ID: 36650835 [TBL] [Abstract][Full Text] [Related]
39. Assessment of bacterial communities and characterization of lead-resistant bacteria in the rhizosphere soils of metal-tolerant Chenopodium ambrosioides grown on lead-zinc mine tailings. Zhang WH; Huang Z; He LY; Sheng XF Chemosphere; 2012 Jun; 87(10):1171-8. PubMed ID: 22397839 [TBL] [Abstract][Full Text] [Related]