These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 24281761)

  • 21. Protease Substrate Profiling by N-Terminal COFRADIC.
    Staes A; Van Damme P; Timmerman E; Ruttens B; Stes E; Gevaert K; Impens F
    Methods Mol Biol; 2017; 1574():51-76. PubMed ID: 28315243
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Proteomics discovery of metalloproteinase substrates in the cellular context by iTRAQ labeling reveals a diverse MMP-2 substrate degradome.
    Dean RA; Overall CM
    Mol Cell Proteomics; 2007 Apr; 6(4):611-23. PubMed ID: 17200105
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Absolute proteomic quantification of the activity state of proteases and proteolytic cleavages using proteolytic signature peptides and isobaric tags.
    Fahlman RP; Chen W; Overall CM
    J Proteomics; 2014 Apr; 100():79-91. PubMed ID: 24060996
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Multiplexed Protease Specificity Profiling Using Isobaric Labeling.
    Tucher J; Tholey A
    Methods Mol Biol; 2017; 1574():171-182. PubMed ID: 28315250
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Time-Resolved Analysis of Matrix Metalloproteinase Substrates in Complex Samples.
    Schlage P; Egli FE; Auf dem Keller U
    Methods Mol Biol; 2017; 1579():185-198. PubMed ID: 28299737
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Profiling of Protein N-Termini and Their Modifications in Complex Samples.
    Demir F; Niedermaier S; Kizhakkedathu JN; Huesgen PF
    Methods Mol Biol; 2017; 1574():35-50. PubMed ID: 28315242
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Quantitative proteomics in plant protease substrate identification.
    Demir F; Niedermaier S; Villamor JG; Huesgen PF
    New Phytol; 2018 May; 218(3):936-943. PubMed ID: 28493421
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Identification of Protease Cleavage Sites by Charge-Based Enrichment of Protein N-Termini.
    Lai ZW; Schilling O
    Methods Mol Biol; 2017; 1579():199-207. PubMed ID: 28299738
    [TBL] [Abstract][Full Text] [Related]  

  • 29. TAILS N-terminomics of human platelets reveals pervasive metalloproteinase-dependent proteolytic processing in storage.
    Prudova A; Serrano K; Eckhard U; Fortelny N; Devine DV; Overall CM
    Blood; 2014 Dec; 124(26):e49-60. PubMed ID: 25331112
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Identification of candidate angiogenic inhibitors processed by matrix metalloproteinase 2 (MMP-2) in cell-based proteomic screens: disruption of vascular endothelial growth factor (VEGF)/heparin affin regulatory peptide (pleiotrophin) and VEGF/Connective tissue growth factor angiogenic inhibitory complexes by MMP-2 proteolysis.
    Dean RA; Butler GS; Hamma-Kourbali Y; Delbé J; Brigstock DR; Courty J; Overall CM
    Mol Cell Biol; 2007 Dec; 27(24):8454-65. PubMed ID: 17908800
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Identification of cellular MMP substrates using quantitative proteomics: isotope-coded affinity tags (ICAT) and isobaric tags for relative and absolute quantification (iTRAQ).
    Butler GS; Dean RA; Morrison CJ; Overall CM
    Methods Mol Biol; 2010; 622():451-70. PubMed ID: 20135298
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mapping the N-Terminome in Tissue Biopsies by PCT-TAILS.
    Bundgaard L; Savickas S; Auf dem Keller U
    Methods Mol Biol; 2020; 2043():285-296. PubMed ID: 31463921
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Tryptic Peptides Bearing C-Terminal Dimethyllysine Need to Be Considered during the Analysis of Lysine Dimethylation in Proteomic Study.
    Chen M; Zhang M; Zhai L; Hu H; Liu P; Tan M
    J Proteome Res; 2017 Sep; 16(9):3460-3469. PubMed ID: 28730820
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Identification of Protease Cleavage Sites and Substrates in Cancer by Carboxy-TAILS (C-TAILS).
    Solis N; Overall CM
    Methods Mol Biol; 2018; 1731():15-28. PubMed ID: 29318539
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Amino-Terminal Oriented Mass Spectrometry of Substrates (ATOMS) N-terminal sequencing of proteins and proteolytic cleavage sites by quantitative mass spectrometry.
    Doucet A; Overall CM
    Methods Enzymol; 2011; 501():275-93. PubMed ID: 22078539
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Degradomic and yeast 2-hybrid inactive catalytic domain substrate trapping identifies new membrane-type 1 matrix metalloproteinase (MMP14) substrates: CCN3 (Nov) and CCN5 (WISP2).
    Butler GS; Connor AR; Sounni NE; Eckhard U; Morrison CJ; Noël A; Overall CM
    Matrix Biol; 2017 May; 59():23-38. PubMed ID: 27471094
    [TBL] [Abstract][Full Text] [Related]  

  • 37. MS-driven protease substrate degradomics.
    Impens F; Colaert N; Helsens K; Plasman K; Van Damme P; Vandekerckhove J; Gevaert K
    Proteomics; 2010 Mar; 10(6):1284-96. PubMed ID: 20058249
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A protocol for analyzing the protein terminome of human cancer cell line culture supernatants.
    Tsumagari K; Chang CH; Ishihama Y
    STAR Protoc; 2021 Sep; 2(3):100682. PubMed ID: 34377995
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Body Fluid Degradomics and Characterization of Basic N-Terminome.
    Sabino F; Hermes O; Auf dem Keller U
    Methods Enzymol; 2017; 585():177-199. PubMed ID: 28109429
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Identification of Protease Specificity by Combining Proteome-Derived Peptide Libraries and Quantitative Proteomics.
    Biniossek ML; Niemer M; Maksimchuk K; Mayer B; Fuchs J; Huesgen PF; McCafferty DG; Turk B; Fritz G; Mayer J; Haecker G; Mach L; Schilling O
    Mol Cell Proteomics; 2016 Jul; 15(7):2515-24. PubMed ID: 27122596
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.