These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
256 related articles for article (PubMed ID: 24281910)
21. Bimetallic Ag-Au nanowires: synthesis, growth mechanism, and catalytic properties. Fu H; Yang X; Jiang X; Yu A Langmuir; 2013 Jun; 29(23):7134-42. PubMed ID: 23679079 [TBL] [Abstract][Full Text] [Related]
22. Growth and fragmentation of silver nanoparticles in their synthesis with a fs laser and CW light by photo-sensitization with benzophenone. Eustis S; Krylova G; Eremenko A; Smirnova N; Schill AW; El-Sayed M Photochem Photobiol Sci; 2005 Jan; 4(1):154-9. PubMed ID: 15616707 [TBL] [Abstract][Full Text] [Related]
23. Controlling the formation of silver nanoparticles on silica by photochemical deposition and other means. Vinci JC; Bilski P; Kotek R; Chignell C Photochem Photobiol; 2010; 86(4):806-12. PubMed ID: 20331526 [TBL] [Abstract][Full Text] [Related]
24. A facile synthesis and characterization of Ag, Au and Pt nanoparticles using a natural hydrocolloid gum kondagogu (Cochlospermum gossypium). Vinod VT; Saravanan P; Sreedhar B; Devi DK; Sashidhar RB Colloids Surf B Biointerfaces; 2011 Apr; 83(2):291-8. PubMed ID: 21185161 [TBL] [Abstract][Full Text] [Related]
26. Hybridization of localized surface plasmon resonance-based Au-Ag nanoparticles. Zhu S; Fu Y Biomed Microdevices; 2009 Jun; 11(3):579-83. PubMed ID: 19085108 [TBL] [Abstract][Full Text] [Related]
27. Core-shell and hollow nanocrystal formation via small molecule surface photodissociation; Ag@Ag2Se as an example. Tan H; Li S; Fan WY J Phys Chem B; 2006 Aug; 110(32):15812-6. PubMed ID: 16898730 [TBL] [Abstract][Full Text] [Related]
28. Plasmon-Driven Chemistry on Mono- and Bimetallic Nanostructures. Li Z; Kurouski D Acc Chem Res; 2021 May; 54(10):2477-2487. PubMed ID: 33908773 [TBL] [Abstract][Full Text] [Related]
29. Controlling the pulsed-laser-induced size reduction of Au and Ag nanoparticles via changes in the external pressure, laser intensity, and excitation wavelength. Werner D; Hashimoto S Langmuir; 2013 Jan; 29(4):1295-302. PubMed ID: 23259708 [TBL] [Abstract][Full Text] [Related]
30. Understanding the photothermal conversion efficiency of gold nanocrystals. Chen H; Shao L; Ming T; Sun Z; Zhao C; Yang B; Wang J Small; 2010 Oct; 6(20):2272-80. PubMed ID: 20827680 [TBL] [Abstract][Full Text] [Related]
33. Monodispersity control in the synthesis of monometallic and bimetallic quasi-spherical gold and silver nanoparticles. Zhang Q; Xie J; Yu Y; Lee JY Nanoscale; 2010 Oct; 2(10):1962-75. PubMed ID: 20714647 [TBL] [Abstract][Full Text] [Related]
34. Au or Ag nanoparticle-decorated 3D urchin-like TiO2 nanostructures: synthesis, characterization, and enhanced photocatalytic activity. Xiang L; Zhao X; Shang C; Yin J J Colloid Interface Sci; 2013 Aug; 403():22-8. PubMed ID: 23673007 [TBL] [Abstract][Full Text] [Related]
35. Enhanced Catalytic Activity of Magnetic Bimetallic Ag-Au Nanoparticles Mediated by Surface Plasmon Resonance. Li ZR; Zhu G; Han GZ J Nanosci Nanotechnol; 2021 May; 21(5):3107-3114. PubMed ID: 33653486 [TBL] [Abstract][Full Text] [Related]
36. In Situ Electron Microscopy of Plasmon-Mediated Nanocrystal Synthesis. Sutter P; Li Y; Argyropoulos C; Sutter E J Am Chem Soc; 2017 May; 139(19):6771-6776. PubMed ID: 28462994 [TBL] [Abstract][Full Text] [Related]
37. Strongly visible-light responsive plasmonic shaped AgX:Ag (X = Cl, Br) nanoparticles for reduction of CO2 to methanol. An C; Wang J; Jiang W; Zhang M; Ming X; Wang S; Zhang Q Nanoscale; 2012 Sep; 4(18):5646-50. PubMed ID: 22869008 [TBL] [Abstract][Full Text] [Related]