These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

524 related articles for article (PubMed ID: 24282027)

  • 1. Functional interaction of Parkinson's disease-associated LRRK2 with members of the dynamin GTPase superfamily.
    Stafa K; Tsika E; Moser R; Musso A; Glauser L; Jones A; Biskup S; Xiong Y; Bandopadhyay R; Dawson VL; Dawson TM; Moore DJ
    Hum Mol Genet; 2014 Apr; 23(8):2055-77. PubMed ID: 24282027
    [TBL] [Abstract][Full Text] [Related]  

  • 2. GTPase activity and neuronal toxicity of Parkinson's disease-associated LRRK2 is regulated by ArfGAP1.
    Stafa K; Trancikova A; Webber PJ; Glauser L; West AB; Moore DJ
    PLoS Genet; 2012; 8(2):e1002526. PubMed ID: 22363216
    [TBL] [Abstract][Full Text] [Related]  

  • 3. GTPase activity regulates kinase activity and cellular phenotypes of Parkinson's disease-associated LRRK2.
    Biosa A; Trancikova A; Civiero L; Glauser L; Bubacco L; Greggio E; Moore DJ
    Hum Mol Genet; 2013 Mar; 22(6):1140-56. PubMed ID: 23241358
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inhibition of excessive mitochondrial fission reduced aberrant autophagy and neuronal damage caused by LRRK2 G2019S mutation.
    Su YC; Qi X
    Hum Mol Genet; 2013 Nov; 22(22):4545-61. PubMed ID: 23813973
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dopaminergic neurodegeneration induced by Parkinson's disease-linked G2019S LRRK2 is dependent on kinase and GTPase activity.
    Nguyen APT; Tsika E; Kelly K; Levine N; Chen X; West AB; Boularand S; Barneoud P; Moore DJ
    Proc Natl Acad Sci U S A; 2020 Jul; 117(29):17296-17307. PubMed ID: 32631998
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 14-3-3 Proteins regulate mutant LRRK2 kinase activity and neurite shortening.
    Lavalley NJ; Slone SR; Ding H; West AB; Yacoubian TA
    Hum Mol Genet; 2016 Jan; 25(1):109-22. PubMed ID: 26546614
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Leucine-rich repeat kinase 2 disturbs mitochondrial dynamics via Dynamin-like protein.
    Niu J; Yu M; Wang C; Xu Z
    J Neurochem; 2012 Aug; 122(3):650-8. PubMed ID: 22639965
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phosphorylation of 4E-BP1 in the mammalian brain is not altered by LRRK2 expression or pathogenic mutations.
    Trancikova A; Mamais A; Webber PJ; Stafa K; Tsika E; Glauser L; West AB; Bandopadhyay R; Moore DJ
    PLoS One; 2012; 7(10):e47784. PubMed ID: 23082216
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Leucine-rich repeat kinase 2 interacts with p21-activated kinase 6 to control neurite complexity in mammalian brain.
    Civiero L; Cirnaru MD; Beilina A; Rodella U; Russo I; Belluzzi E; Lobbestael E; Reyniers L; Hondhamuni G; Lewis PA; Van den Haute C; Baekelandt V; Bandopadhyay R; Bubacco L; Piccoli G; Cookson MR; Taymans JM; Greggio E
    J Neurochem; 2015 Dec; 135(6):1242-56. PubMed ID: 26375402
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rac1 protein rescues neurite retraction caused by G2019S leucine-rich repeat kinase 2 (LRRK2).
    Chan D; Citro A; Cordy JM; Shen GC; Wolozin B
    J Biol Chem; 2011 May; 286(18):16140-9. PubMed ID: 21454543
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Contribution of GTPase activity to LRRK2-associated Parkinson disease.
    Tsika E; Moore DJ
    Small GTPases; 2013; 4(3):164-70. PubMed ID: 24025585
    [TBL] [Abstract][Full Text] [Related]  

  • 12. LRRK2 regulates mitochondrial dynamics and function through direct interaction with DLP1.
    Wang X; Yan MH; Fujioka H; Liu J; Wilson-Delfosse A; Chen SG; Perry G; Casadesus G; Zhu X
    Hum Mol Genet; 2012 May; 21(9):1931-44. PubMed ID: 22228096
    [TBL] [Abstract][Full Text] [Related]  

  • 13. LRRK2 GTPase dysfunction in the pathogenesis of Parkinson's disease.
    Xiong Y; Dawson VL; Dawson TM
    Biochem Soc Trans; 2012 Oct; 40(5):1074-9. PubMed ID: 22988868
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Roc domain of LRRK2 as a hub for protein-protein interactions: a focus on PAK6 and its impact on RAB phosphorylation.
    Cogo S; Ho FY; Tosoni E; Tomkins JE; Tessari I; Iannotta L; Montine TJ; Manzoni C; Lewis PA; Bubacco L; Chartier Harlin MC; Taymans JM; Kortholt A; Nichols J; Cendron L; Civiero L; Greggio E
    Brain Res; 2022 Mar; 1778():147781. PubMed ID: 35016853
    [TBL] [Abstract][Full Text] [Related]  

  • 15. GTPase activity plays a key role in the pathobiology of LRRK2.
    Xiong Y; Coombes CE; Kilaru A; Li X; Gitler AD; Bowers WJ; Dawson VL; Dawson TM; Moore DJ
    PLoS Genet; 2010 Apr; 6(4):e1000902. PubMed ID: 20386743
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adenoviral-mediated expression of G2019S LRRK2 induces striatal pathology in a kinase-dependent manner in a rat model of Parkinson's disease.
    Tsika E; Nguyen AP; Dusonchet J; Colin P; Schneider BL; Moore DJ
    Neurobiol Dis; 2015 May; 77():49-61. PubMed ID: 25731749
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Leucine-rich repeat kinase 2 (LRRK2)/PARK8 possesses GTPase activity that is altered in familial Parkinson's disease R1441C/G mutants.
    Li X; Tan YC; Poulose S; Olanow CW; Huang XY; Yue Z
    J Neurochem; 2007 Oct; 103(1):238-47. PubMed ID: 17623048
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The neurobiology of LRRK2 and its role in the pathogenesis of Parkinson's disease.
    Rideout HJ; Stefanis L
    Neurochem Res; 2014; 39(3):576-92. PubMed ID: 23729298
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel LRRK2 GTP-binding inhibitors reduced degeneration in Parkinson's disease cell and mouse models.
    Li T; Yang D; Zhong S; Thomas JM; Xue F; Liu J; Kong L; Voulalas P; Hassan HE; Park JS; MacKerell AD; Smith WW
    Hum Mol Genet; 2014 Dec; 23(23):6212-22. PubMed ID: 24993787
    [TBL] [Abstract][Full Text] [Related]  

  • 20. LRRK2 transport is regulated by its novel interacting partner Rab32.
    Waschbüsch D; Michels H; Strassheim S; Ossendorf E; Kessler D; Gloeckner CJ; Barnekow A
    PLoS One; 2014; 9(10):e111632. PubMed ID: 25360523
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.