BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

448 related articles for article (PubMed ID: 24282207)

  • 1. Advancing hypoxic training in team sports: from intermittent hypoxic training to repeated sprint training in hypoxia.
    Faiss R; Girard O; Millet GP
    Br J Sports Med; 2013 Dec; 47 Suppl 1(Suppl 1):i45-50. PubMed ID: 24282207
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Application of 'live low-train high' for enhancing normoxic exercise performance in team sport athletes.
    McLean BD; Gore CJ; Kemp J
    Sports Med; 2014 Sep; 44(9):1275-87. PubMed ID: 24849544
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Combining hypoxic methods for peak performance.
    Millet GP; Roels B; Schmitt L; Woorons X; Richalet JP
    Sports Med; 2010 Jan; 40(1):1-25. PubMed ID: 20020784
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of various living-low and training-high modes with distinct training prescriptions on sea-level performance: A network meta-analysis.
    Feng X; Chen Y; Yan T; Lu H; Wang C; Zhao L
    PLoS One; 2024; 19(4):e0297007. PubMed ID: 38635743
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Effect of Natural or Simulated Altitude Training on High-Intensity Intermittent Running Performance in Team-Sport Athletes: A Meta-Analysis.
    Hamlin MJ; Lizamore CA; Hopkins WG
    Sports Med; 2018 Feb; 48(2):431-446. PubMed ID: 29129021
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Repeated sprint in hypoxia as a time-metabolic efficient strategy to improve physical fitness of obese women.
    Camacho-Cardenosa A; Camacho-Cardenosa M; Brazo-Sayavera J; Timón R; González-Custodio A; Olcina G
    Eur J Appl Physiol; 2020 May; 120(5):1051-1061. PubMed ID: 32185477
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of Altitude/Hypoxia on Single- and Multiple-Sprint Performance: A Comprehensive Review.
    Girard O; Brocherie F; Millet GP
    Sports Med; 2017 Oct; 47(10):1931-1949. PubMed ID: 28451905
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhancing team-sport athlete performance: is altitude training relevant?
    Billaut F; Gore CJ; Aughey RJ
    Sports Med; 2012 Sep; 42(9):751-67. PubMed ID: 22845561
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exercise Performance, Muscle Oxygen Extraction and Blood Cell Mitochondrial Respiration after Repeated-Sprint and Sprint Interval Training in Hypoxia: A Pilot Study.
    Gatterer H; Menz V; Salazar-Martinez E; Sumbalova Z; Garcia-Souza LF; Velika B; Gnaiger E; Burtscher M
    J Sports Sci Med; 2018 Sep; 17(3):339-347. PubMed ID: 30116106
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Significant molecular and systemic adaptations after repeated sprint training in hypoxia.
    Faiss R; Léger B; Vesin JM; Fournier PE; Eggel Y; Dériaz O; Millet GP
    PLoS One; 2013; 8(2):e56522. PubMed ID: 23437154
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Repeated sprint training under hypoxia improves aerobic performance and repeated sprint ability by enhancing muscle deoxygenation and markers of angiogenesis in rugby sevens.
    Pramkratok W; Songsupap T; Yimlamai T
    Eur J Appl Physiol; 2022 Mar; 122(3):611-622. PubMed ID: 34977961
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Changes in Running Performance After Four Weeks of Interval Hypoxic Training in Australian Footballers: A Single-Blind Placebo-Controlled Study.
    McLean BD; Tofari PJ; Gore CJ; Kemp JG
    J Strength Cond Res; 2015 Nov; 29(11):3206-15. PubMed ID: 25944456
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of Repeated-Sprint Training in Hypoxia on Sea-Level Performance: A Meta-Analysis.
    Brocherie F; Girard O; Faiss R; Millet GP
    Sports Med; 2017 Aug; 47(8):1651-1660. PubMed ID: 28194720
    [TBL] [Abstract][Full Text] [Related]  

  • 14. No Improved Performance With Repeated-Sprint Training in Hypoxia Versus Normoxia: A Double-Blind and Crossover Study.
    Montero D; Lundby C
    Int J Sports Physiol Perform; 2017 Feb; 12(2):161-167. PubMed ID: 27140941
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of 2 Different Protocols of Repeated-Sprint Training in Hypoxia in Elite Female Rugby Sevens Players During an Altitude Training Camp.
    Bouten J; Brick M; Saboua A; Hadjadj JL; Piscione J; Margot C; Doucende G; Bourrel N; Millet GP; Brocherie F
    Int J Sports Physiol Perform; 2023 Sep; 18(9):953-959. PubMed ID: 37487586
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Psychophysiological Responses to Repeated-Sprint Training in Normobaric Hypoxia and Normoxia.
    Brocherie F; Millet GP; Girard O
    Int J Sports Physiol Perform; 2017 Jan; 12(1):115-123. PubMed ID: 27139930
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Acute performance responses to repeated treadmill sprints in hypoxia with varying inspired oxygen fractions, exercise-to-recovery ratios and recovery modalities.
    Tong TK; Tao ED; Chow BC; Baker JS; Jiao JJ
    Eur J Appl Physiol; 2021 Jul; 121(7):1933-1942. PubMed ID: 33730209
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determinants of team-sport performance: implications for altitude training by team-sport athletes.
    Bishop DJ; Girard O
    Br J Sports Med; 2013 Dec; 47 Suppl 1(Suppl 1):i17-21. PubMed ID: 24282200
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Current trends in altitude training.
    Wilber RL
    Sports Med; 2001; 31(4):249-65. PubMed ID: 11310547
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Update in the understanding of altitude-induced limitations to performance in team-sport athletes.
    Billaut F; Aughey RJ
    Br J Sports Med; 2013 Dec; 47 Suppl 1(Suppl 1):i22-5. PubMed ID: 24282202
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.