BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 24282930)

  • 21. The use of ozone gas for the inactivation of Bacillus anthracis and Bacillus subtilis spores on building materials.
    Wood JP; Wendling M; Richter W; Rogers J
    PLoS One; 2020; 15(5):e0233291. PubMed ID: 32437373
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Disinfection methods for spores of Bacillus atrophaeus, B. anthracis, Clostridium tetani, C. botulinum and C. difficile.
    Oie S; Obayashi A; Yamasaki H; Furukawa H; Kenri T; Takahashi M; Kawamoto K; Makino S
    Biol Pharm Bull; 2011; 34(8):1325-9. PubMed ID: 21804226
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Inactivation of Bacillus anthracis spores by liquid biocides in the presence of food residue.
    Hilgren J; Swanson KM; Diez-Gonzalez F; Cords B
    Appl Environ Microbiol; 2007 Oct; 73(20):6370-7. PubMed ID: 17720823
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Investigations on the sporicidal and fungicidal activity of disinfectants.
    Lensing HH; Oei HL
    Zentralbl Bakteriol Mikrobiol Hyg B; 1985 Dec; 181(6):487-95. PubMed ID: 3938146
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Decontamination of a BSL3 laboratory by hydrogen peroxide fumigation using three different surrogates for Bacillus anthracis spores.
    Kaspari O; Lemmer K; Becker S; Lochau P; Howaldt S; Nattermann H; Grunow R
    J Appl Microbiol; 2014 Oct; 117(4):1095-103. PubMed ID: 25040253
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Activity of selected oxidizing microbicides against the spores of Clostridium difficile: relevance to environmental control.
    Perez J; Springthorpe VS; Sattar SA
    Am J Infect Control; 2005 Aug; 33(6):320-5. PubMed ID: 16061137
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Efficacy of liquid spray decontaminants for inactivation of Bacillus anthracis spores on building and outdoor materials.
    Wood JP; Choi YW; Rogers JV; Kelly TJ; Riggs KB; Willenberg ZJ
    J Appl Microbiol; 2011 May; 110(5):1262-73. PubMed ID: 21332900
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Disinfection of Bacillus subtilis spore-contaminated surface materials with a sodium hypochlorite and a hydrogen peroxide-based sanitizer.
    DeQueiroz GA; Day DF
    Lett Appl Microbiol; 2008 Feb; 46(2):176-80. PubMed ID: 18215219
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Culture age and drying time as variables of the AOAC Sporicidal Test.
    Miner NA; Taylor MA; Bernal SE; Harris VL; Sichinga MJ
    J AOAC Int; 2001; 84(4):1159-63. PubMed ID: 11501918
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Systematic evaluation of the efficacy of chlorine dioxide in decontamination of building interior surfaces contaminated with anthrax spores.
    Rastogi VK; Ryan SP; Wallace L; Smith LS; Shah SS; Martin GB
    Appl Environ Microbiol; 2010 May; 76(10):3343-51. PubMed ID: 20305025
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of Electrolyzed Oxidizing Water on Inactivation of Bacillus subtilis and Bacillus cereus Spores in Suspension and on Carriers.
    Zhang C; Li B; Jadeja R; Hung YC
    J Food Sci; 2016 Jan; 81(1):M144-9. PubMed ID: 26642381
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Use of superabsorbent polymer gels for surface decontamination of Bacillus anthracis spores.
    Rogers JV; Richter WR; Choi YW; Judd AK
    Lett Appl Microbiol; 2009 Feb; 48(2):180-6. PubMed ID: 19055629
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Influence of temperature and organic load on chemical disinfection of Geobacillus steareothermophilus spores, a surrogate for Bacillus anthracis.
    Guan J; Chan M; Brooks BW; Rohonczy L
    Can J Vet Res; 2013 Apr; 77(2):100-4. PubMed ID: 24082400
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Evaluation of AISI Type 304 stainless steel as a suitable surface material for evaluating the efficacy of peracetic acid-based disinfectants against Clostridium difficile spores.
    Black E; Owens K; Staub R; Li J; Mills K; Valenstein J; Hilgren J
    PLoS One; 2017; 12(10):e0187074. PubMed ID: 29065168
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effectiveness of calcium hypochlorite, quaternary ammonium compounds, and sodium hypochlorite in eliminating vegetative cells and spores of
    Yim JH; Song KY; Kim H; Bae D; Chon JW; Seo KH
    J Vet Sci; 2021 Jan; 22(1):e11. PubMed ID: 33522163
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [A study of the efficacy of disinfectants against anthrax spores].
    Lensing HH; Oei HL
    Tijdschr Diergeneeskd; 1984 Jul; 109(13):557-63. PubMed ID: 6431631
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Decontamination of Bacillus subtilis var. niger spores on selected surfaces by chlorine dioxide gas.
    Li YJ; Zhu N; Jia HQ; Wu JH; Yi Y; Qi JC
    J Zhejiang Univ Sci B; 2012 Apr; 13(4):254-60. PubMed ID: 22467366
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Performance of the AOAC use-dilution method with targeted modifications: collaborative study.
    Tomasino SF; Parker AE; Hamilton MA; Hamilton GC
    J AOAC Int; 2012; 95(6):1618-28. PubMed ID: 23451377
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Comparative sporicidal effect of liquid chemical germicides on three medical devices contaminated with spores of Bacillus subtilis.
    Sagripanti JL; Bonifacino A
    Am J Infect Control; 1996 Oct; 24(5):364-71. PubMed ID: 8902111
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Quantitative method to determine sporicidal decontamination of building surfaces by gaseous fumigants, and issues related to laboratory-scale studies.
    Rastogi VK; Wallace L; Smith LS; Ryan SP; Martin B
    Appl Environ Microbiol; 2009 Jun; 75(11):3688-94. PubMed ID: 19346341
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.