These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 24283334)

  • 1. Nitrous oxide as a tracer gas in the ASHRAE 110-1995 Standard.
    Burke M; Wong L; Gonzales BA; Knutson G
    J Occup Environ Hyg; 2014; 11(1):32-9. PubMed ID: 24283334
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reducing employee exposure potential using the ANSI/ASHRAE 110 Method of Testing Performance of Laboratory Fume Hoods as a diagnostic tool.
    Maupins K; Hitchings DT
    Am Ind Hyg Assoc J; 1998 Feb; 59(2):133-8. PubMed ID: 9487667
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Containment testing of laboratory hoods in the as-used condition.
    Greenley PL; Billings CE; DiBerardinis LJ; Edwards RW; Barkley WE
    Appl Occup Environ Hyg; 2000 Feb; 15(2):209-16. PubMed ID: 10675979
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application of a tracer gas challenge with a human subject to investigate factors affecting the performance of laboratory fume hoods.
    Altemose BA; Flynn MR; Sprankle J
    Am Ind Hyg Assoc J; 1998 May; 59(5):321-7. PubMed ID: 9858975
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Required response time for variable air volume fume hood controllers.
    Ekberg LE; Melin J
    Ann Occup Hyg; 2000 Mar; 44(2):143-50. PubMed ID: 10717266
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development and evaluation of an air-curtain fume cabinet with considerations of its aerodynamics.
    Huang RF; Wu YD; Chen HD; Chen CC; Chen CW; Chang CP; Shih TS
    Ann Occup Hyg; 2007 Mar; 51(2):189-206. PubMed ID: 16857702
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of thermal loading on laboratory fume hood performance.
    Johnston JD; Chessin SJ; Chesnovar BW; Lillquist DR
    Appl Occup Environ Hyg; 2000 Nov; 15(11):863-8. PubMed ID: 11062932
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A review of published quantitative experimental studies on factors affecting laboratory fume hood performance.
    Ahn K; Woskie S; DiBerardinis L; Ellenbecker M
    J Occup Environ Hyg; 2008 Nov; 5(11):735-53. PubMed ID: 18780237
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermal loading as a causal factor in exceeding the 0.1 PPM laboratory fume hood control level.
    Chessin SJ; Johnston JD
    Appl Occup Environ Hyg; 2002 Jul; 17(7):512-8. PubMed ID: 12083172
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of leakage from fume hoods using tracer gas, tracer nanoparticles and nanopowder handling test methodologies.
    Dunn KH; Tsai CS; Woskie SR; Bennett JS; Garcia A; Ellenbecker MJ
    J Occup Environ Hyg; 2014; 11(10):D164-73. PubMed ID: 25175285
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Airborne nanoparticle exposures while using constant-flow, constant-velocity, and air-curtain-isolated fume hoods.
    Tsai SJ; Huang RF; Ellenbecker MJ
    Ann Occup Hyg; 2010 Jan; 54(1):78-87. PubMed ID: 19933309
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development and characterization of an inclined air-curtain (IAC) fume hood.
    Huang RF; Chen JK; Tang KC
    Ann Occup Hyg; 2015 Jun; 59(5):655-67. PubMed ID: 25690760
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flow and containment characteristics of a sash-less, variable-height inclined air-curtain fume hood.
    Huang RF; Chen JK; Hung WL
    Ann Occup Hyg; 2013 Aug; 57(7):934-52. PubMed ID: 23519947
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamic effects on containment of air-curtain fume hood operated with heat source.
    Chen JK; Huang RF; Hsin PY
    J Occup Environ Hyg; 2012; 9(11):640-52. PubMed ID: 23009207
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Installation of a flow control device in an inclined air-curtain fume hood to control wake-induced exposure.
    Chen JK
    J Occup Environ Hyg; 2016 Aug; 13(8):588-97. PubMed ID: 26950527
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Flow and containment characteristics of an air-curtain fume hood operated at high temperatures.
    Chen JK; Huang RF; Hsin PY; Hsu CM; Chen CW
    Ind Health; 2012; 50(2):103-14. PubMed ID: 22293724
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of walk-by and sash movement on contaminant leakage of air curtain-isolated fume hood.
    Huang RF; Chen HD; Hung CH
    Ind Health; 2007 Dec; 45(6):804-16. PubMed ID: 18212476
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of industrial local exhaust hood efficiency by a tracer gas technique.
    Hampl V
    Am Ind Hyg Assoc J; 1984 Jul; 45(7):485-90. PubMed ID: 6464994
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Significance of face velocity fluctuation in relation to laboratory fume hood performance.
    Tseng LC; Huang RF; Chen CC
    Ind Health; 2010; 48(1):43-51. PubMed ID: 20160407
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vortex ventilation in the laboratory environment.
    Meisenzahl LR
    J Occup Environ Hyg; 2014; 11(10):672-9. PubMed ID: 25175282
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.