BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 24283466)

  • 1. Strategies toward enhanced low-pressure volumetric hydrogen storage in nanoporous cryoadsorbents.
    Ahmed A; Thornton AW; Konstas K; Kannam SK; Babarao R; Todd BD; Hill AJ; Hill MR
    Langmuir; 2013 Dec; 29(50):15689-97. PubMed ID: 24283466
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Studies on metal-organic frameworks of Cu(II) with isophthalate linkers for hydrogen storage.
    Yan Y; Yang S; Blake AJ; Schröder M
    Acc Chem Res; 2014 Feb; 47(2):296-307. PubMed ID: 24168725
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Understanding Volumetric and Gravimetric Hydrogen Adsorption Trade-off in Metal-Organic Frameworks.
    Gómez-Gualdrón DA; Wang TC; García-Holley P; Sawelewa RM; Argueta E; Snurr RQ; Hupp JT; Yildirim T; Farha OK
    ACS Appl Mater Interfaces; 2017 Oct; 9(39):33419-33428. PubMed ID: 28387498
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of surface area, free volume, and heat of adsorption on hydrogen uptake in metal-organic frameworks.
    Frost H; Düren T; Snurr RQ
    J Phys Chem B; 2006 May; 110(19):9565-70. PubMed ID: 16686503
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lithium-doped MOF impregnated with lithium-coated fullerenes: a hydrogen storage route for high gravimetric and volumetric uptakes at ambient temperatures.
    Rao D; Lu R; Xiao C; Kan E; Deng K
    Chem Commun (Camb); 2011 Jul; 47(27):7698-700. PubMed ID: 21655633
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metal-organic frameworks impregnated with magnesium-decorated fullerenes for methane and hydrogen storage.
    Thornton AW; Nairn KM; Hill JM; Hill AJ; Hill MR
    J Am Chem Soc; 2009 Aug; 131(30):10662-9. PubMed ID: 19583258
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Water-stable zirconium-based metal-organic framework material with high-surface area and gas-storage capacities.
    Gutov OV; Bury W; Gomez-Gualdron DA; Krungleviciute V; Fairen-Jimenez D; Mondloch JE; Sarjeant AA; Al-Juaid SS; Snurr RQ; Hupp JT; Yildirim T; Farha OK
    Chemistry; 2014 Sep; 20(39):12389-93. PubMed ID: 25123293
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular screening of metal-organic frameworks for CO2 storage.
    Babarao R; Jiang J
    Langmuir; 2008 Jun; 24(12):6270-8. PubMed ID: 18484751
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exceptional H2 saturation uptake in microporous metal-organic frameworks.
    Wong-Foy AG; Matzger AJ; Yaghi OM
    J Am Chem Soc; 2006 Mar; 128(11):3494-5. PubMed ID: 16536503
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hypothetical high-surface-area carbons with exceptional hydrogen storage capacities: open carbon frameworks.
    Kuchta B; Firlej L; Mohammadhosseini A; Boulet P; Beckner M; Romanos J; Pfeifer P
    J Am Chem Soc; 2012 Sep; 134(36):15130-7. PubMed ID: 22897685
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High capacity hydrogen adsorption in Cu(II) tetracarboxylate framework materials: the role of pore size, ligand functionalization, and exposed metal sites.
    Lin X; Telepeni I; Blake AJ; Dailly A; Brown CM; Simmons JM; Zoppi M; Walker GS; Thomas KM; Mays TJ; Hubberstey P; Champness NR; Schröder M
    J Am Chem Soc; 2009 Feb; 131(6):2159-71. PubMed ID: 19159298
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of an acetylene bond on hydrogen adsorption in diamond-like carbon allotropes: from first principles to atomic simulation.
    Wu X; Li L; Fang T; Wang Y; Cai W; Xiang Z
    Phys Chem Chem Phys; 2017 Mar; 19(13):9261-9269. PubMed ID: 28322397
    [TBL] [Abstract][Full Text] [Related]  

  • 13. New Li-doped fullerene-intercalated phthalocyanine covalent organic frameworks designed for hydrogen storage.
    Guo JH; Zhang H; Miyamoto Y
    Phys Chem Chem Phys; 2013 Jun; 15(21):8199-207. PubMed ID: 23609981
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Densified HKUST-1 Monoliths as a Route to High Volumetric and Gravimetric Hydrogen Storage Capacity.
    Madden DG; O'Nolan D; Rampal N; Babu R; Çamur C; Al Shakhs AN; Zhang SY; Rance GA; Perez J; Maria Casati NP; Cuadrado-Collados C; O'Sullivan D; Rice NP; Gennett T; Parilla P; Shulda S; Hurst KE; Stavila V; Allendorf MD; Silvestre-Albero J; Forse AC; Champness NR; Chapman KW; Fairen-Jimenez D
    J Am Chem Soc; 2022 Aug; 144(30):13729-13739. PubMed ID: 35876689
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanoporous polymers for hydrogen storage.
    Germain J; Fréchet JM; Svec F
    Small; 2009 May; 5(10):1098-111. PubMed ID: 19360719
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrogen adsorption in a highly stable porous rare-earth metal-organic framework: sorption properties and neutron diffraction studies.
    Luo J; Xu H; Liu Y; Zhao Y; Daemen LL; Brown C; Timofeeva TV; Ma S; Zhou HC
    J Am Chem Soc; 2008 Jul; 130(30):9626-7. PubMed ID: 18611006
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High hydrogen storage capacity of porous carbons prepared by using activated carbon.
    Wang H; Gao Q; Hu J
    J Am Chem Soc; 2009 May; 131(20):7016-22. PubMed ID: 19405471
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Screening of hypothetical metal-organic frameworks for H2 storage.
    Gomez DA; Toda J; Sastre G
    Phys Chem Chem Phys; 2014 Sep; 16(35):19001-10. PubMed ID: 25093656
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrogen storage in engineered carbon nanospaces.
    Burress J; Kraus M; Beckner M; Cepel R; Suppes G; Wexler C; Pfeifer P
    Nanotechnology; 2009 May; 20(20):204026. PubMed ID: 19420674
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tunable Gravimetric and Volumetric Hydrogen Storage Capacities in Polyhedral Oligomeric Silsesquioxane Frameworks.
    Deshmukh A; Chiu CC; Chen YW; Kuo JL
    ACS Appl Mater Interfaces; 2016 Sep; 8(38):25219-28. PubMed ID: 27599537
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.