These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 24283472)

  • 1. High-density genome-wide association mapping implicates an F-box encoding gene in Medicago truncatula resistance to Aphanomyces euteiches.
    Bonhomme M; André O; Badis Y; Ronfort J; Burgarella C; Chantret N; Prosperi JM; Briskine R; Mudge J; Debéllé F; Navier H; Miteul H; Hajri A; Baranger A; Tiffin P; Dumas B; Pilet-Nayel ML; Young ND; Jacquet C
    New Phytol; 2014 Mar; 201(4):1328-1342. PubMed ID: 24283472
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A local score approach improves GWAS resolution and detects minor QTL: application to Medicago truncatula quantitative disease resistance to multiple Aphanomyces euteiches isolates.
    Bonhomme M; Fariello MI; Navier H; Hajri A; Badis Y; Miteul H; Samac DA; Dumas B; Baranger A; Jacquet C; Pilet-Nayel ML
    Heredity (Edinb); 2019 Oct; 123(4):517-531. PubMed ID: 31138867
    [TBL] [Abstract][Full Text] [Related]  

  • 3. AER1, a major gene conferring resistance to Aphanomyces euteiches in Medicago truncatula.
    Pilet-Nayel ML; Prospéri JM; Hamon C; Lesné A; Lecointe R; Le Goff I; Hervé M; Deniot G; Delalande M; Huguet T; Jacquet C; Baranger A
    Phytopathology; 2009 Feb; 99(2):203-8. PubMed ID: 19159312
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Partial resistance of Medicago truncatula to Aphanomyces euteiches is associated with protection of the root stele and is controlled by a major QTL rich in proteasome-related genes.
    Djébali N; Jauneau A; Ameline-Torregrosa C; Chardon F; Jaulneau V; Mathé C; Bottin A; Cazaux M; Pilet-Nayel ML; Baranger A; Aouani ME; Esquerré-Tugayé MT; Dumas B; Huguet T; Jacquet C
    Mol Plant Microbe Interact; 2009 Sep; 22(9):1043-55. PubMed ID: 19656040
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transcriptome analysis highlights preformed defences and signalling pathways controlled by the prAe1 quantitative trait locus (QTL), conferring partial resistance to Aphanomyces euteiches in Medicago truncatula.
    Badis Y; Bonhomme M; Lafitte C; Huguet S; Balzergue S; Dumas B; Jacquet C
    Mol Plant Pathol; 2015 Dec; 16(9):973-86. PubMed ID: 25765337
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Medicago TERPENE SYNTHASE 10 Is Involved in Defense Against an Oomycete Root Pathogen.
    Yadav H; Dreher D; Athmer B; Porzel A; Gavrin A; Baldermann S; Tissier A; Hause B
    Plant Physiol; 2019 Jul; 180(3):1598-1613. PubMed ID: 31015300
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A complex genetic network involving a broad-spectrum locus and strain-specific loci controls resistance to different pathotypes of Aphanomyces euteiches in Medicago truncatula.
    Hamon C; Baranger A; Miteul H; Lecointe R; Le Goff I; Deniot G; Onfroy C; Moussart A; Prosperi JM; Tivoli B; Delourme R; Pilet-Nayel ML
    Theor Appl Genet; 2010 Mar; 120(5):955-70. PubMed ID: 20012740
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The symbiotic transcription factor MtEFD and cytokinins are positively acting in the Medicago truncatula and Ralstonia solanacearum pathogenic interaction.
    Moreau S; Fromentin J; Vailleau F; Vernié T; Huguet S; Balzergue S; Frugier F; Gamas P; Jardinaud MF
    New Phytol; 2014 Mar; 201(4):1343-1357. PubMed ID: 24325235
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genome-wide association mapping of partial resistance to Aphanomyces euteiches in pea.
    Desgroux A; L'Anthoëne V; Roux-Duparque M; Rivière JP; Aubert G; Tayeh N; Moussart A; Mangin P; Vetel P; Piriou C; McGee RJ; Coyne CJ; Burstin J; Baranger A; Manzanares-Dauleux M; Bourion V; Pilet-Nayel ML
    BMC Genomics; 2016 Feb; 17():124. PubMed ID: 26897486
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Silencing of PR-10-like proteins in Medicago truncatula results in an antagonistic induction of other PR proteins and in an increased tolerance upon infection with the oomycete Aphanomyces euteiches.
    Colditz F; Niehaus K; Krajinski F
    Planta; 2007 Jun; 226(1):57-71. PubMed ID: 17237953
    [TBL] [Abstract][Full Text] [Related]  

  • 11. NFP, a LysM protein controlling Nod factor perception, also intervenes in Medicago truncatula resistance to pathogens.
    Rey T; Nars A; Bonhomme M; Bottin A; Huguet S; Balzergue S; Jardinaud MF; Bono JJ; Cullimore J; Dumas B; Gough C; Jacquet C
    New Phytol; 2013 May; 198(3):875-886. PubMed ID: 23432463
    [TBL] [Abstract][Full Text] [Related]  

  • 12. QTL meta-analysis provides a comprehensive view of loci controlling partial resistance to Aphanomyces euteiches in four sources of resistance in pea.
    Hamon C; Coyne CJ; McGee RJ; Lesné A; Esnault R; Mangin P; Hervé M; Le Goff I; Deniot G; Roux-Duparque M; Morin G; McPhee KE; Delourme R; Baranger A; Pilet-Nayel ML
    BMC Plant Biol; 2013 Mar; 13():45. PubMed ID: 23497245
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lipo-chitooligosaccharide signalling blocks a rapid pathogen-induced ROS burst without impeding immunity.
    Rey T; André O; Nars A; Dumas B; Gough C; Bottin A; Jacquet C
    New Phytol; 2019 Jan; 221(2):743-749. PubMed ID: 30378690
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dissecting the Genetic Architecture of Aphanomyces Root Rot Resistance in Lentil by QTL Mapping and Genome-Wide Association Study.
    Ma Y; Marzougui A; Coyne CJ; Sankaran S; Main D; Porter LD; Mugabe D; Smitchger JA; Zhang C; Amin MN; Rasheed N; Ficklin SP; McGee RJ
    Int J Mol Sci; 2020 Mar; 21(6):. PubMed ID: 32244875
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nitrogen modulation of Medicago truncatula resistance to Aphanomyces euteiches depends on plant genotype.
    Thalineau E; Fournier C; Gravot A; Wendehenne D; Jeandroz S; Truong HN
    Mol Plant Pathol; 2018 Mar; 19(3):664-676. PubMed ID: 28296004
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MtQRRS1, an R-locus required for Medicago truncatula quantitative resistance to Ralstonia solanacearum.
    Ben C; Debellé F; Berges H; Bellec A; Jardinaud MF; Anson P; Huguet T; Gentzbittel L; Vailleau F
    New Phytol; 2013 Aug; 199(3):758-72. PubMed ID: 23638965
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Induction of distinct defense-associated protein patterns in Aphanomyces euteiches (Oomycota)-elicited and -inoculated Medicago truncatula cell-suspension cultures: a proteome and phosphoproteome approach.
    Trapphoff T; Beutner C; Niehaus K; Colditz F
    Mol Plant Microbe Interact; 2009 Apr; 22(4):421-36. PubMed ID: 19271957
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mapping QTL associated with partial resistance to Aphanomyces root rot in pea (Pisum sativum L.) using a 13.2 K SNP array and SSR markers.
    Wu L; Fredua-Agyeman R; Hwang SF; Chang KF; Conner RL; McLaren DL; Strelkov SE
    Theor Appl Genet; 2021 Sep; 134(9):2965-2990. PubMed ID: 34129066
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Proteomic profiling unravels insights into the molecular background underlying increased Aphanomyces euteiches-tolerance of Medicago truncatula.
    Colditz F; Braun HP; Jacquet C; Niehaus K; Krajinski F
    Plant Mol Biol; 2005 Oct; 59(3):387-406. PubMed ID: 16235107
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aphanomyces euteiches cell wall fractions containing novel glucan-chitosaccharides induce defense genes and nuclear calcium oscillations in the plant host Medicago truncatula.
    Nars A; Lafitte C; Chabaud M; Drouillard S; Mélida H; Danoun S; Le Costaouëc T; Rey T; Benedetti J; Bulone V; Barker DG; Bono JJ; Dumas B; Jacquet C; Heux L; Fliegmann J; Bottin A
    PLoS One; 2013; 8(9):e75039. PubMed ID: 24086432
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.