These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 24283537)
1. Carbohydrate metabolism changes in Prunus persica gummosis infected with Lasiodiplodia theobromae. Li Z; Gao L; Wang YT; Zhu W; Ye JL; Li GH Phytopathology; 2014 May; 104(5):445-52. PubMed ID: 24283537 [TBL] [Abstract][Full Text] [Related]
2. The peach (Prunus persica L. Batsch) genome harbours 10 KNOX genes, which are differentially expressed in stem development, and the class 1 KNOPE1 regulates elongation and lignification during primary growth. Testone G; Condello E; Verde I; Nicolodi C; Caboni E; Dettori MT; Vendramin E; Bruno L; Bitonti MB; Mele G; Giannino D J Exp Bot; 2012 Sep; 63(15):5417-35. PubMed ID: 22888130 [TBL] [Abstract][Full Text] [Related]
3. Characterization of phytotoxin and secreted proteins identifies of Lasiodiplodia theobromae, causes of peach gummosis. Li Z; Zhang H; Li G Fungal Biol; 2019 Jan; 123(1):51-58. PubMed ID: 30654957 [TBL] [Abstract][Full Text] [Related]
4. Lasiodiplodia theobromae-induced alteration in ROS metabolism and its relation to gummosis development in Prunus persica. Zhang H; Zhang D; Wang F; Hsiang T; Liu J; Li G Plant Physiol Biochem; 2020 Sep; 154():43-53. PubMed ID: 32526610 [TBL] [Abstract][Full Text] [Related]
5. Gene Expression Changes during the Gummosis Development of Peach Shoots in Response to Lasiodiplodia theobromae Infection Using RNA-Seq. Gao L; Wang Y; Li Z; Zhang H; Ye J; Li G Front Physiol; 2016; 7():170. PubMed ID: 27242544 [TBL] [Abstract][Full Text] [Related]
6. Isolation and characterization of a TERMINAL FLOWER 1 homolog from Prunus serotina Ehrh. Wang Y; Pijut PM Tree Physiol; 2013 Aug; 33(8):855-65. PubMed ID: 23956129 [TBL] [Abstract][Full Text] [Related]
7. Integrated transcriptomic and metabolic analyses reveal that ethylene enhances peach susceptibility to Lasiodiplodia theobromae-induced gummosis. Zhang D; Shen X; Zhang H; Huang X; He H; Ye J; Cardinale F; Liu J; Liu J; Li G Hortic Res; 2022 Jan; 9():. PubMed ID: 35040976 [TBL] [Abstract][Full Text] [Related]
8. Influence factors and gene expression patterns during MeJa-induced gummosis in peach. Li M; Liu M; Peng F; Fang L J Plant Physiol; 2015 Jun; 182():49-61. PubMed ID: 26056992 [TBL] [Abstract][Full Text] [Related]
9. Characterization of the peach homologue of the ethylene receptor, PpETR1, reveals some unusual features regarding transcript processing. Bassett CL; Artlip TS; Callahan AM Planta; 2002 Aug; 215(4):679-88. PubMed ID: 12172852 [TBL] [Abstract][Full Text] [Related]
10. CBF gene expression in peach leaf and bark tissues is gated by a circadian clock. Artlip TS; Wisniewski ME; Bassett CL; Norelli JL Tree Physiol; 2013 Aug; 33(8):866-77. PubMed ID: 23956128 [TBL] [Abstract][Full Text] [Related]
11. Molecular cloning and expression analysis of an arginine decarboxylase gene from peach (Prunus persica). Liu JH; Ban Y; Wen XP; Nakajima I; Moriguchi T Gene; 2009 Jan; 429(1-2):10-7. PubMed ID: 18996450 [TBL] [Abstract][Full Text] [Related]
12. The Dual Roles of Zinc Sulfate in Mitigating Peach Gummosis. Li Z; Fan Y; Gao L; Cao X; Ye J; Li G Plant Dis; 2016 Feb; 100(2):345-351. PubMed ID: 30694151 [TBL] [Abstract][Full Text] [Related]
13. Identification and Characterization of Botryosphaeria spp. Causing Gummosis of Peach Trees in Hubei Province, Central China. Wang F; Zhao L; Li G; Huang J; Hsiang T Plant Dis; 2011 Nov; 95(11):1378-1384. PubMed ID: 30731783 [TBL] [Abstract][Full Text] [Related]
14. PpeTAC1 promotes the horizontal growth of branches in peach trees and is a member of a functionally conserved gene family found in diverse plants species. Dardick C; Callahan A; Horn R; Ruiz KB; Zhebentyayeva T; Hollender C; Whitaker M; Abbott A; Scorza R Plant J; 2013 Aug; 75(4):618-30. PubMed ID: 23663106 [TBL] [Abstract][Full Text] [Related]
15. Carbon metabolism of peach fruit after harvest: changes in enzymes involved in organic acid and sugar level modifications. Borsani J; Budde CO; Porrini L; Lauxmann MA; Lombardo VA; Murray R; Andreo CS; Drincovich MF; Lara MV J Exp Bot; 2009; 60(6):1823-37. PubMed ID: 19264753 [TBL] [Abstract][Full Text] [Related]
16. Differential expression of alpha-l-arabinofuranosidase and alpha-l-arabinofuranosidase/beta-d-xylosidase genes during peach growth and ripening. Carolina Di Santo M; Pagano EA; Sozzi GO Plant Physiol Biochem; 2009 Jul; 47(7):562-9. PubMed ID: 19303789 [TBL] [Abstract][Full Text] [Related]
17. L-Ascorbate biosynthesis in peach: cloning of six L-galactose pathway-related genes and their expression during peach fruit development. Imai T; Ban Y; Terakami S; Yamamoto T; Moriguchi T Physiol Plant; 2009 Jun; 136(2):139-49. PubMed ID: 19453508 [TBL] [Abstract][Full Text] [Related]
18. Transcriptome Analysis of Genes Involved in Cold Hardiness of Peach Tree ( Yu DJ; Jun SH; Park J; Kwon JH; Lee HJ Genes (Basel); 2020 Jun; 11(6):. PubMed ID: 32492847 [TBL] [Abstract][Full Text] [Related]