These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 2428369)

  • 1. Membrane damage by channel-forming proteins: staphylococcal alpha-toxin, streptolysin-O and the C5b-9 complement complex.
    Bhakdi S; Tranum-Jensen J
    Biochem Soc Symp; 1985; 50():221-33. PubMed ID: 2428369
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanism of complement cytolysis and the concept of channel-forming proteins.
    Bhakdi S; Tranum-Jensen J
    Philos Trans R Soc Lond B Biol Sci; 1984 Sep; 306(1129):311-24. PubMed ID: 6149576
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Studies on the structure and mechanism of a bacterial protein toxin by analytical ultracentrifugation and small-angle neutron scattering.
    Gilbert RJ; Heenan RK; Timmins PA; Gingles NA; Mitchell TJ; Rowe AJ; Rossjohn J; Parker MW; Andrew PW; Byron O
    J Mol Biol; 1999 Nov; 293(5):1145-60. PubMed ID: 10547292
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recovery of human fibroblasts from attack by the pore-forming alpha-toxin of Staphylococcus aureus.
    Walev I; Palmer M; Martin E; Jonas D; Weller U; Höhn-Bentz H; Husmann M; Bhakdi S
    Microb Pathog; 1994 Sep; 17(3):187-201. PubMed ID: 7535374
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanism of membrane damage by streptolysin-O.
    Bhakdi S; Tranum-Jensen J; Sziegoleit A
    Infect Immun; 1985 Jan; 47(1):52-60. PubMed ID: 3880730
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Formation of protein channels in target membranes.
    Bhakdi S; Tranum-Jensen J
    Adv Exp Med Biol; 1985; 184():3-21. PubMed ID: 3898753
    [No Abstract]   [Full Text] [Related]  

  • 7. Staphylococcal alpha-toxin, streptolysin-O, and Escherichia coli hemolysin: prototypes of pore-forming bacterial cytolysins.
    Bhakdi S; Bayley H; Valeva A; Walev I; Walker B; Kehoe M; Palmer M
    Arch Microbiol; 1996 Feb; 165(2):73-9. PubMed ID: 8593102
    [TBL] [Abstract][Full Text] [Related]  

  • 8. C5b-9 assembly: average binding of one C9 molecule to C5b-8 without poly-C9 formation generates a stable transmembrane pore.
    Bhakdi S; Tranum-Jensen J
    J Immunol; 1986 Apr; 136(8):2999-3005. PubMed ID: 3958488
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transmembrane channel-formation by five complement proteins.
    Müller-Eberhard HJ
    Biochem Soc Symp; 1985; 50():235-46. PubMed ID: 2428370
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Complement activation and attack on autologous cell membranes induced by streptolysin-O.
    Bhakdi S; Tranum-Jensen J
    Infect Immun; 1985 Jun; 48(3):713-9. PubMed ID: 3997244
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The structure of Staphylococcus aureus alpha-toxin-induced ionic channel.
    Krasilnikov OV; Sabirov RZ; Ternovsky VI; Merzliak PG; Tashmukhamedov BA
    Gen Physiol Biophys; 1988 Oct; 7(5):467-73. PubMed ID: 2466732
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Streptolysin O: a proposed model of allosteric interaction between a pore-forming protein and its target lipid bilayer.
    Palmer M; Vulicevic I; Saweljew P; Valeva A; Kehoe M; Bhakdi S
    Biochemistry; 1998 Feb; 37(8):2378-83. PubMed ID: 9485385
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Molecular mechanism of membrane pore formation with cholesterol binding cytolysin: streptolysin O and perfringolysin O].
    Shimizu T; Hayashi H
    Tanpakushitsu Kakusan Koso; 2001 Mar; 46(4 Suppl):532-9. PubMed ID: 11268657
    [No Abstract]   [Full Text] [Related]  

  • 14. The staphylococcal alpha-toxin pore has a flexible conformation.
    Vécsey-Semjén B; Knapp S; Möllby R; van der Goot FG
    Biochemistry; 1999 Apr; 38(14):4296-302. PubMed ID: 10194347
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nucleated cell killing by complement: effects of C5b-9 channel size and extracellular Ca2+ on the lytic process.
    Kim SH; Carney DF; Hammer CH; Shin ML
    J Immunol; 1987 Mar; 138(5):1530-6. PubMed ID: 2433349
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Re-incorporation of the terminal C5b-9 complement complex into lipid bilayers: formation and stability of reconstituted liposomes.
    Bhakdi S; Tranum-Jensen J
    Immunology; 1980 Nov; 41(3):737-42. PubMed ID: 7461711
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oligomerization and hemolytic properties of the C-terminal domain of pyolysin, a cholesterol-dependent cytolysin.
    Pokrajac L; Harris JR; Sarraf N; Palmer M
    Biochem Cell Biol; 2013 Apr; 91(2):59-66. PubMed ID: 23527633
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigation of the pore-forming mechanism of a cytolytic delta-endotoxin from Bacillus thuringiensis.
    Promdonkoy B; Ellar DJ
    Biochem J; 2003 Aug; 374(Pt 1):255-9. PubMed ID: 12795638
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pore formation of thermostable direct hemolysin secreted from Vibrio parahaemolyticus in lipid bilayers.
    Takahashi A; Yamamoto C; Kodama T; Yamashita K; Harada N; Nakano M; Honda T; Nakaya Y
    Int J Toxicol; 2006; 25(5):409-18. PubMed ID: 16940013
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Elimination of terminal complement intermediates from the plasma membrane of nucleated cells: the rate of disappearance differs for cells carrying C5b-7 or C5b-8 or a mixture of C5b-8 with a limited number of C5b-9.
    Carney DF; Koski CL; Shin ML
    J Immunol; 1985 Mar; 134(3):1804-9. PubMed ID: 3968432
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.