These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 24283753)

  • 1. The anti-lymphoma activity of APO866, an inhibitor of nicotinamide adenine dinucleotide biosynthesis, is potentialized when used in combination with anti-CD20 antibody.
    Nahimana A; Aubry D; Breton CS; Majjigapu SR; Sordat B; Vogel P; Duchosal MA
    Leuk Lymphoma; 2014 Sep; 55(9):2141-50. PubMed ID: 24283753
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A critical role of autophagy in antileukemia/lymphoma effects of APO866, an inhibitor of NAD biosynthesis.
    Ginet V; Puyal J; Rummel C; Aubry D; Breton C; Cloux AJ; Majjigapu SR; Sordat B; Vogel P; Bruzzone S; Nencioni A; Duchosal MA; Nahimana A
    Autophagy; 2014 Apr; 10(4):603-17. PubMed ID: 24487122
    [TBL] [Abstract][Full Text] [Related]  

  • 3. APO866 Increases Antitumor Activity of Cyclosporin-A by Inducing Mitochondrial and Endoplasmic Reticulum Stress in Leukemia Cells.
    Cagnetta A; Caffa I; Acharya C; Soncini D; Acharya P; Adamia S; Pierri I; Bergamaschi M; Garuti A; Fraternali G; Mastracci L; Provenzani A; Zucal C; Damonte G; Salis A; Montecucco F; Patrone F; Ballestrero A; Bruzzone S; Gobbi M; Nencioni A; Cea M
    Clin Cancer Res; 2015 Sep; 21(17):3934-45. PubMed ID: 25964294
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The NAD biosynthesis inhibitor APO866 has potent antitumor activity against hematologic malignancies.
    Nahimana A; Attinger A; Aubry D; Greaney P; Ireson C; Thougaard AV; Tjørnelund J; Dawson KM; Dupuis M; Duchosal MA
    Blood; 2009 Apr; 113(14):3276-86. PubMed ID: 19196867
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Combinative effects of β-Lapachone and APO866 on pancreatic cancer cell death through reactive oxygen species production and PARP-1 activation.
    Breton CS; Aubry D; Ginet V; Puyal J; Heulot M; Widmann C; Duchosal MA; Nahimana A
    Biochimie; 2015 Sep; 116():141-53. PubMed ID: 26188110
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A combination of the metabolic enzyme inhibitor APO866 and the immune adjuvant L-1-methyl tryptophan induces additive antitumor activity.
    Yang HJ; Yen MC; Lin CC; Lin CM; Chen YL; Weng TY; Huang TT; Wu CL; Lai MD
    Exp Biol Med (Maywood); 2010 Jul; 235(7):869-76. PubMed ID: 20558841
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Potent synergistic interaction between the Nampt inhibitor APO866 and the apoptosis activator TRAIL in human leukemia cells.
    Zoppoli G; Cea M; Soncini D; Fruscione F; Rudner J; Moran E; Caffa I; Bedognetti D; Motta G; Ghio R; Ferrando F; Ballestrero A; Parodi S; Belka C; Patrone F; Bruzzone S; Nencioni A
    Exp Hematol; 2010 Nov; 38(11):979-88. PubMed ID: 20696207
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nicotinamide phosphoribosyltransferase inhibitor APO866 induces C6 glioblastoma cell death via autophagy.
    Yang P; Zhang L; Shi QJ; Lu YB; Wu M; Wei EQ; Zhang WP
    Pharmazie; 2015 Oct; 70(10):650-5. PubMed ID: 26601421
    [TBL] [Abstract][Full Text] [Related]  

  • 9. NAD⁺ depletion by APO866 in combination with radiation in a prostate cancer model, results from an in vitro and in vivo study.
    Zerp SF; Vens C; Floot B; Verheij M; van Triest B
    Radiother Oncol; 2014 Feb; 110(2):348-54. PubMed ID: 24412016
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A preclinical study on the rescue of normal tissue by nicotinic acid in high-dose treatment with APO866, a specific nicotinamide phosphoribosyltransferase inhibitor.
    Olesen UH; Thougaard AV; Jensen PB; Sehested M
    Mol Cancer Ther; 2010 Jun; 9(6):1609-17. PubMed ID: 20515945
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anti-proliferation effect of APO866 on C6 glioblastoma cells by inhibiting nicotinamide phosphoribosyltransferase.
    Zhang LY; Liu LY; Qie LL; Ling KN; Xu LH; Wang F; Fang SH; Lu YB; Hu H; Wei EQ; Zhang WP
    Eur J Pharmacol; 2012 Jan; 674(2-3):163-70. PubMed ID: 22119381
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reactive oxygen/nitrogen species contribute substantially to the antileukemia effect of APO866, a NAD lowering agent.
    Cloux AJ; Aubry D; Heulot M; Widmann C; ElMokh O; Piacente F; Cea M; Nencioni A; Bellotti A; Bouzourène K; Pellegrin M; Mazzolai L; Duchosal MA; Nahimana A
    Oncotarget; 2019 Nov; 10(62):6723-6738. PubMed ID: 31803365
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rituximab enhances radiation-triggered apoptosis in non-Hodgkin's lymphoma cells via caspase-dependent and - independent mechanisms.
    Skvortsova I; Skvortsov S; Popper BA; Haidenberger A; Saurer M; Gunkel AR; Zwierzina H; Lukas P
    J Radiat Res; 2006 Jun; 47(2):183-96. PubMed ID: 16819145
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Combination anti-CD74 (milatuzumab) and anti-CD20 (rituximab) monoclonal antibody therapy has in vitro and in vivo activity in mantle cell lymphoma.
    Alinari L; Yu B; Christian BA; Yan F; Shin J; Lapalombella R; Hertlein E; Lustberg ME; Quinion C; Zhang X; Lozanski G; Muthusamy N; Prætorius-Ibba M; O'Connor OA; Goldenberg DM; Byrd JC; Blum KA; Baiocchi RA
    Blood; 2011 Apr; 117(17):4530-41. PubMed ID: 21228331
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surface levels of CD20 determine anti-CD20 antibodies mediated cell death in vitro.
    Singh V; Gupta D; Arora R; Tripathi RP; Almasan A; Macklis RM
    PLoS One; 2014; 9(11):e111113. PubMed ID: 25364827
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Distinct apoptotic signaling characteristics of the anti-CD40 monoclonal antibody dacetuzumab and rituximab produce enhanced antitumor activity in non-Hodgkin lymphoma.
    Lewis TS; McCormick RS; Emmerton K; Lau JT; Yu SF; McEarchern JA; Grewal IS; Law CL
    Clin Cancer Res; 2011 Jul; 17(14):4672-81. PubMed ID: 21610152
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Association of rituximab with graphene oxide confers direct cytotoxicity for CD20-positive lymphoma cells.
    Luo C; Deng Z; Li L; Clayton F; Chen AL; Wei R; Miles R; Stephens DM; Glenn M; Wang X; Jensen PE; Chen X
    Oncotarget; 2016 Mar; 7(11):12806-22. PubMed ID: 26859679
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Highly potent anti-CD20-RLI immunocytokine targeting established human B lymphoma in SCID mouse.
    Vincent M; Teppaz G; Lajoie L; Solé V; Bessard A; Maillasson M; Loisel S; Béchard D; Clémenceau B; Thibault G; Garrigue-Antar L; Jacques Y; Quéméner A
    MAbs; 2014; 6(4):1026-37. PubMed ID: 25072059
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anti-Lymphoma Efficacy Comparison of Anti-Cd20 Monoclonal Antibody-Targeted and Non-Targeted Star-Shaped Polymer-Prodrug Conjugates.
    Lidický O; Janoušková O; Strohalm J; Alam M; Klener P; Etrych T
    Molecules; 2015 Nov; 20(11):19849-64. PubMed ID: 26556320
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Targeting the CD20 and CXCR4 pathways in non-hodgkin lymphoma with rituximab and high-affinity CXCR4 antagonist BKT140.
    Beider K; Ribakovsky E; Abraham M; Wald H; Weiss L; Rosenberg E; Galun E; Avigdor A; Eizenberg O; Peled A; Nagler A
    Clin Cancer Res; 2013 Jul; 19(13):3495-507. PubMed ID: 23637121
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.