BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 24283767)

  • 1. Room temperature synthesis of a copper ink for the intense pulsed light sintering of conductive copper films.
    Dharmadasa R; Jha M; Amos DA; Druffel T
    ACS Appl Mater Interfaces; 2013 Dec; 5(24):13227-34. PubMed ID: 24283767
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Solution phase synthesis and intense pulsed light sintering and reduction of a copper oxide ink with an encapsulating nickel oxide barrier.
    Jha M; Dharmadasa R; Draper GL; Sherehiy A; Sumanasekera G; Amos D; Druffel T
    Nanotechnology; 2015 May; 26(17):175601. PubMed ID: 25854751
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sintering Copper Nanoparticles with Photonic Additive for Printed Conductive Patterns by Intense Pulsed Light.
    Chung WY; Lai YC; Yonezawa T; Liao YC
    Nanomaterials (Basel); 2019 Jul; 9(8):. PubMed ID: 31349711
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Highly conductive copper nano/microparticles ink via flash light sintering for printed electronics.
    Joo SJ; Hwang HJ; Kim HS
    Nanotechnology; 2014 Jul; 25(26):265601. PubMed ID: 24916116
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Copper nanoparticles: aqueous phase synthesis and conductive films fabrication at low sintering temperature.
    Deng D; Jin Y; Cheng Y; Qi T; Xiao F
    ACS Appl Mater Interfaces; 2013 May; 5(9):3839-46. PubMed ID: 23578010
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication of Conductive Copper Films on Flexible Polymer Substrates by Low-Temperature Sintering of Composite Cu Ink in Air.
    Kanzaki M; Kawaguchi Y; Kawasaki H
    ACS Appl Mater Interfaces; 2017 Jun; 9(24):20852-20858. PubMed ID: 28574247
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication of Elemental Copper by Intense Pulsed Light Processing of a Copper Nitrate Hydroxide Ink.
    Draper GL; Dharmadasa R; Staats ME; Lavery BW; Druffel T
    ACS Appl Mater Interfaces; 2015 Aug; 7(30):16478-85. PubMed ID: 26154246
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In situ monitoring of a flash light sintering process using silver nano-ink for producing flexible electronics.
    Chung WH; Hwang HJ; Lee SH; Kim HS
    Nanotechnology; 2013 Jan; 24(3):035202. PubMed ID: 23263030
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In situ monitoring of flash-light sintering of copper nanoparticle ink for printed electronics.
    Hwang HJ; Chung WH; Kim HS
    Nanotechnology; 2012 Dec; 23(48):485205. PubMed ID: 23138346
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intensive Plasmonic Flash Light Sintering of Copper Nanoinks Using a Band-Pass Light Filter for Highly Electrically Conductive Electrodes in Printed Electronics.
    Hwang YT; Chung WH; Jang YR; Kim HS
    ACS Appl Mater Interfaces; 2016 Apr; 8(13):8591-9. PubMed ID: 26975337
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inkjet Fabrication of Copper Patterns for Flexible Electronics: Using Paper with Active Precoatings.
    Öhlund T; Schuppert AK; Hummelgård M; Bäckström J; Nilsson HE; Olin H
    ACS Appl Mater Interfaces; 2015 Aug; 7(33):18273-82. PubMed ID: 26245645
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cu ion ink for a flexible substrate and highly conductive patterning by intensive pulsed light sintering.
    Wang BY; Yoo TH; Song YW; Lim DS; Oh YJ
    ACS Appl Mater Interfaces; 2013 May; 5(10):4113-9. PubMed ID: 23586602
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hybrid Printing Metal-mesh Transparent Conductive Films with Lower Energy Photonically Sintered Copper/tin Ink.
    Chen X; Wu X; Shao S; Zhuang J; Xie L; Nie S; Su W; Chen Z; Cui Z
    Sci Rep; 2017 Oct; 7(1):13239. PubMed ID: 29038555
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis of Antioxidative Conductive Copper Inks with Superior Adhesion.
    Ma WY; Cheng YY; Chen JK; Chan KH; Lin ZJ; Chou WH; Chang WC
    J Nanosci Nanotechnol; 2018 Jan; 18(1):318-322. PubMed ID: 29768847
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conductive inks with a "built-in" mechanism that enables sintering at room temperature.
    Grouchko M; Kamyshny A; Mihailescu CF; Anghel DF; Magdassi S
    ACS Nano; 2011 Apr; 5(4):3354-9. PubMed ID: 21438563
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Low-Thermal-Budget Photonic Processing of Highly Conductive Cu Interconnects Based on CuO Nanoinks: Potential for Flexible Printed Electronics.
    Rager MS; Aytug T; Veith GM; Joshi P
    ACS Appl Mater Interfaces; 2016 Jan; 8(3):2441-8. PubMed ID: 26720684
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Flame-driven aerosol synthesis of copper-nickel nanopowders and conductive nanoparticle films.
    Sharma MK; Qi D; Buchner RD; Scharmach WJ; Papavassiliou V; Swihart MT
    ACS Appl Mater Interfaces; 2014 Aug; 6(16):13542-51. PubMed ID: 25075968
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct intense pulsed light sintering of inkjet-printed copper oxide layers within six milliseconds.
    Kang H; Sowade E; Baumann RR
    ACS Appl Mater Interfaces; 2014 Feb; 6(3):1682-7. PubMed ID: 24433059
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Suitability of Copper Nitride as a Wiring Ink Sintered by Low-Energy Intense Pulsed Light Irradiation.
    Nakamura T; Cheong HJ; Takamura M; Yoshida M; Uemura S
    Nanomaterials (Basel); 2018 Aug; 8(8):. PubMed ID: 30110978
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A self-reducible and alcohol-soluble copper-based metal-organic decomposition ink for printed electronics.
    Shin DH; Woo S; Yem H; Cha M; Cho S; Kang M; Jeong S; Kim Y; Kang K; Piao Y
    ACS Appl Mater Interfaces; 2014 Mar; 6(5):3312-9. PubMed ID: 24512011
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.