These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 24283775)

  • 1. Mass transport at infinite regular arrays of microband electrodes submitted to natural convection: theory and experiments.
    Pebay C; Sella C; Thouin L; Amatore C
    Anal Chem; 2013 Dec; 85(24):12062-9. PubMed ID: 24283775
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mass transport at microband electrodes: transient, quasi-steady-state, and convective regimes.
    Amatore C; Pebay C; Sella C; Thouin L
    Chemphyschem; 2012 Apr; 13(6):1562-8. PubMed ID: 22411777
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Theory and experiments of transport at channel microband electrodes under laminar flows. 1. Steady-state regimes at a single electrode.
    Amatore C; Da Mota N; Sella C; Thouin L
    Anal Chem; 2007 Nov; 79(22):8502-10. PubMed ID: 17939744
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Difference between ultramicroelectrodes and microelectrodes: influence of natural convection.
    Amatore C; Pebay C; Thouin L; Wang A; Warkocz JS
    Anal Chem; 2010 Aug; 82(16):6933-9. PubMed ID: 20704383
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Theory and experiments of transport at channel microband electrodes under laminar flow. 3. Electrochemical detection at electrode arrays under steady state.
    Amatore C; Da Mota N; Sella C; Thouin L
    Anal Chem; 2010 Mar; 82(6):2434-40. PubMed ID: 20184349
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Theory and experiments of transport at channel microband electrodes under laminar flows. 2. Electrochemical regimes at double microband assemblies under steady state.
    Amatore C; Da Mota N; Lemmer C; Pebay C; Sella C; Thouin L
    Anal Chem; 2008 Dec; 80(24):9483-90. PubMed ID: 19007242
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Advancing from Rules of Thumb: Quantifying the Effects of Small Density Changes in Mass Transport to Electrodes. Understanding Natural Convection.
    Ngamchuea K; Eloul S; Tschulik K; Compton RG
    Anal Chem; 2015 Jul; 87(14):7226-34. PubMed ID: 26067985
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Channel microband chronoamperometry: from transient to steady-state regimes.
    Amatore C; Lemmer C; Sella C; Thouin L
    Anal Chem; 2011 Jun; 83(11):4170-7. PubMed ID: 21495729
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A microband lactate biosensor fabricated using a water-based screen-printed carbon ink.
    Rawson FJ; Purcell WM; Xu J; Pemberton RM; Fielden PR; Biddle N; Hart JP
    Talanta; 2009 Jan; 77(3):1149-54. PubMed ID: 19064104
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Channel microband electrode arrays for mechanistic electrochemistry. Two-dimensional voltammetry:  transport-limited currents.
    Alden JA; Feldman MA; Hill E; Prieto F; Oyama M; Coles BA; Compton RG; Dobson PJ; Leigh PA
    Anal Chem; 1998 May; 70(9):1707-20. PubMed ID: 21651264
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single nanoparticle collisions at microfluidic microband electrodes: the effect of electrode material and mass transfer.
    Alligrant TM; Anderson MJ; Dasari R; Stevenson KJ; Crooks RM
    Langmuir; 2014 Nov; 30(44):13462-9. PubMed ID: 25360826
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of chronopotentiometry to determine the thickness of diffusion layer adjacent to an ion-exchange membrane under natural convection.
    Larchet C; Nouri S; Auclair B; Dammak L; Nikonenko V
    Adv Colloid Interface Sci; 2008 Jun; 139(1-2):45-61. PubMed ID: 18308286
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabrication of disposable gold macrodisc and platinum microband electrodes for use in room-temperature ionic liquids.
    Xiong L; Lowinsohn D; Ward KR; Compton RG
    Analyst; 2013 Sep; 138(18):5444-52. PubMed ID: 23884243
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fluorescence confocal laser scanning microscopy as a probe of pH gradients in electrode reactions and surface activity.
    Rudd NC; Cannan S; Bitziou E; Ciani I; Whitworth AL; Unwin PR
    Anal Chem; 2005 Oct; 77(19):6205-17. PubMed ID: 16194080
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigating the concept of diffusional independence. Potential step transients at nano- and micro-electrode arrays: theory and experiment.
    Menshykau D; Huang XJ; Rees NV; del Campo FJ; Muñoz FX; Compton RG
    Analyst; 2009 Feb; 134(2):343-8. PubMed ID: 19173060
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simplifying the evaluation of graphene modified electrode performance using rotating disk electrode voltammetry.
    Guo SX; Zhao SF; Bond AM; Zhang J
    Langmuir; 2012 Mar; 28(11):5275-85. PubMed ID: 22352793
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fabrication of nanopore array electrodes by focused ion beam milling.
    Lanyon YH; De Marzi G; Watson YE; Quinn AJ; Gleeson JP; Redmond G; Arrigan DW
    Anal Chem; 2007 Apr; 79(8):3048-55. PubMed ID: 17370998
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Theory and practice of enzyme bioaffinity electrodes. Direct electrochemical product detection.
    Limoges B; Marchal D; Mavré F; Savéant JM; Schöllhorn B
    J Am Chem Soc; 2008 Jun; 130(23):7259-75. PubMed ID: 18489091
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transient convection, diffusion, and adsorption in surface-based biosensors.
    Hansen R; Bruus H; Callisen TH; Hassager O
    Langmuir; 2012 May; 28(19):7557-63. PubMed ID: 22509887
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Band Electrodes in Sensing Applications: Response Characteristics and Band Fabrication Methods.
    Li D; Batchelor-McAuley C; Chen L; Compton RG
    ACS Sens; 2019 Sep; 4(9):2250-2266. PubMed ID: 31407573
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.