These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 2428415)

  • 41. The divalent cation-binding sites of gramicidin A transmembrane ion-channel.
    Golovanov AP; Barsukov IL; Arseniev AS; Bystrov VF; Sukhanov SV; Barsukov LI
    Biopolymers; 1991 Mar; 31(4):425-34. PubMed ID: 1713797
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The effect of Rb+, Cs+, and T1+ on the gramicidin A-induced conductance changes of the skeletal muscle cell membrane.
    Caffier G; Shvinka NE
    Acta Biol Med Ger; 1982; 41(11):1087-90. PubMed ID: 6189311
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Binding of thallium and other cations to the gramicidin A channel. Equilibrium dialysis study of gramicidin in phosphatidylcholine vesicles.
    Veatch WR; Durkin JT
    J Mol Biol; 1980 Nov; 143(4):411-7. PubMed ID: 6164793
    [No Abstract]   [Full Text] [Related]  

  • 44. Remarkable affinity and selectivity for Cs+ and uranyl (UO22+) binding to the manganese site of the apo-water oxidation complex of photosystem II.
    Ananyev GM; Murphy A; Abe Y; Dismukes GC
    Biochemistry; 1999 Jun; 38(22):7200-9. PubMed ID: 10353831
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Magnetic resonance and kinetic studies of the mechanism of membrane-bound sodium and potassium ion- activated adenosine triphosphatase.
    Grisham CM; Mildvan AS
    J Supramol Struct; 1975; 3(3):304-13. PubMed ID: 171521
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Effects of permeant monovalent cations on end-plate channels.
    Gage PW; Van Helden D
    J Physiol; 1979 Mar; 288():509-28. PubMed ID: 112241
    [TBL] [Abstract][Full Text] [Related]  

  • 47. 23Na-nuclear magnetic resonance investigation of gramicidin-induced ion transport through membranes under equilibrium conditions.
    Buster DC; Hinton JF; Millett FS; Shungu DC
    Biophys J; 1988 Feb; 53(2):145-52. PubMed ID: 2449917
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The modifications of the final stages of the complement reaction by alkali metal cations.
    Dalmasso AP; Lelchuk R; Giavedoni EB; De Isola ED
    J Immunol; 1975 Jul; 115(1):63-8. PubMed ID: 239058
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Sodium ion binding in the gramicidin A channel. Solid-state NMR studies of the tryptophan residues.
    Separovic F; Gehrmann J; Milne T; Cornell BA; Lin SY; Smith R
    Biophys J; 1994 Oct; 67(4):1495-500. PubMed ID: 7529584
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Quantifying non-covalent binding affinity using mass spectrometry: a systematic study on complexes of cyclodextrins with alkali metal cations.
    Wei W; Chu Y; Wang R; He X; Ding C
    Rapid Commun Mass Spectrom; 2015 May; 29(10):927-36. PubMed ID: 26407307
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Na+ interacting with gramicidin D. A nuclear magnetic resonance study.
    Monoi H; Uedaira H
    Biophys J; 1979 Mar; 25(3):535-40. PubMed ID: 95566
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Solution structure of a parallel left-handed double-helical gramicidin-A determined by 2D 1H NMR.
    Chen Y; Tucker A; Wallace BA
    J Mol Biol; 1996 Dec; 264(4):757-69. PubMed ID: 8980684
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Multinuclear magnetic resonance, electrospray ionization-mass spectroscopy, and parametric method 5 studies of a new derivative of gossypol with 2-thiophenecarbohydrazide as well as its complexes with LI+, Na+, K+, RB+, and Cs+ cations.
    Przybylski P; Schilf W; Lewandowska W; Brzezinski B
    Biopolymers; 2006 Oct; 83(3):213-25. PubMed ID: 16741985
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Two mechanisms of H+/OH- transport across phospholipid vesicular membrane facilitated by gramicidin A.
    Prabhananda BS; Kombrabail MH
    Biophys J; 1996 Dec; 71(6):3091-7. PubMed ID: 8968580
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Ion-specific diffusion rates through transmembrane protein channels. A molecular dynamics study.
    Fischer W; Brickmann J
    Biophys Chem; 1983 Nov; 18(4):323-37. PubMed ID: 6318843
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Theoretical calculation of the NMR spin-spin coupling constants and the NMR shifts allow distinguishability between the specific direct and the water-mediated binding of a divalent metal cation to guanine.
    Sychrovský V; Sponer J; Hobza P
    J Am Chem Soc; 2004 Jan; 126(2):663-72. PubMed ID: 14719966
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Cation-binding location and hydrogen-exchange sites for gramicidin in SDS micelles using NOESY NMR.
    Hinton JF
    J Magn Reson B; 1996 Jul; 112(1):26-31. PubMed ID: 8661303
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The pore dimensions of gramicidin A.
    Smart OS; Goodfellow JM; Wallace BA
    Biophys J; 1993 Dec; 65(6):2455-60. PubMed ID: 7508762
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Structure of gramicidin D-RbCl complex at atomic resolution from low-temperature synchrotron data: interactions of double-stranded gramicidin channel contents and cations with channel wall.
    Główka ML; Olczak A; Bojarska J; Szczesio M; Duax WL; Burkhart BM; Pangborn WA; Langs DA; Wawrzak Z
    Acta Crystallogr D Biol Crystallogr; 2005 Apr; 61(Pt 4):433-41. PubMed ID: 15805598
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Temperature-induced incorporation of gramicidin A into lysolecithin micelles demonstrated by 13C NMR.
    Spisni A; Khaled MA; Urry DW
    FEBS Lett; 1979 Jun; 102(2):321-4. PubMed ID: 88376
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.