BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 24284431)

  • 1. Polymer-free optode nanosensors for dynamic, reversible, and ratiometric sodium imaging in the physiological range.
    Ruckh TT; Mehta AA; Dubach JM; Clark HA
    Sci Rep; 2013 Nov; 3():3366. PubMed ID: 24284431
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of an Optical Nanosensor Incorporating a pH-Sensitive Quencher Dye for Potassium Imaging.
    Sahari A; Ruckh TT; Hutchings R; Clark HA
    Anal Chem; 2015 Nov; 87(21):10684-7. PubMed ID: 26444247
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ion-Switchable Quantum Dot Förster Resonance Energy Transfer Rates in Ratiometric Potassium Sensors.
    Ruckh TT; Skipwith CG; Chang W; Senko AW; Bulovic V; Anikeeva PO; Clark HA
    ACS Nano; 2016 Apr; 10(4):4020-30. PubMed ID: 27089024
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biodegradable optode-based nanosensors for in vivo monitoring.
    Balaconis MK; Clark HA
    Anal Chem; 2012 Jul; 84(13):5787-93. PubMed ID: 22725692
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intracellular ion monitoring using a gold-core polymer-shell nanosensor architecture.
    Stanca SE; Nietzsche S; Fritzsche W; Cranfield CG; Biskup C
    Nanotechnology; 2010 Feb; 21(5):055501. PubMed ID: 20023314
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dual-fluorophore ratiometric pH nanosensor with tuneable pKa and extended dynamic range.
    Chauhan VM; Burnett GR; Aylott JW
    Analyst; 2011 May; 136(9):1799-801. PubMed ID: 21416087
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A method for estimating intracellular ion concentration using optical nanosensors and ratiometric imaging.
    Rong G; Kim EH; Poskanzer KE; Clark HA
    Sci Rep; 2017 Sep; 7(1):10819. PubMed ID: 28883429
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fluorescent nano-optodes for glucose detection.
    Billingsley K; Balaconis MK; Dubach JM; Zhang N; Lim E; Francis KP; Clark HA
    Anal Chem; 2010 May; 82(9):3707-13. PubMed ID: 20355725
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Imaging Sodium Flux during Action Potentials in Neurons with Fluorescent Nanosensors and Transparent Microelectrodes.
    Rong G; Kim EH; Qiang Y; Di W; Zhong Y; Zhao X; Fang H; Clark HA
    ACS Sens; 2018 Dec; 3(12):2499-2505. PubMed ID: 30358986
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fluorescent nanoparticles for the measurement of ion concentration in biological systems.
    Dubach JM; Balaconis MK; Clark HA
    J Vis Exp; 2011 Jul; (53):. PubMed ID: 21750495
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ratiometric optical PEBBLE nanosensors for real-time magnesium ion concentrations inside viable cells.
    Park EJ; Brasuel M; Behrend C; Philbert MA; Kopelman R
    Anal Chem; 2003 Aug; 75(15):3784-91. PubMed ID: 14572044
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On the design of fluorescent ratiometric nanosensors.
    Doussineau T; Schulz A; Lapresta-Fernandez A; Moro A; Körsten S; Trupp S; Mohr GJ
    Chemistry; 2010 Sep; 16(34):10290-9. PubMed ID: 20665579
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A hydrogel based nanosensor with an unprecedented broad sensitivity range for pH measurements in cellular compartments.
    Zhang M; Søndergaard RV; Kumar EK; Henriksen JR; Cui D; Hammershøj P; Clausen MH; Andresen TL
    Analyst; 2015 Nov; 140(21):7246-53. PubMed ID: 26393332
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ionophore-based optical nanosensors incorporating hydrophobic carbon dots and a pH-sensitive quencher dye for sodium detection.
    Galyean AA; Behr MR; Cash KJ
    Analyst; 2018 Jan; 143(2):458-465. PubMed ID: 29226289
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A fluorescent PEBBLE nanosensor for intracellular free zinc.
    Sumner JP; Aylott JW; Monson E; Kopelman R
    Analyst; 2002 Jan; 127(1):11-6. PubMed ID: 11827375
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Virus-templated FRET platform for the rational design of ratiometric fluorescent nanosensors.
    Chen L; Wu Y; Lin Y; Wang Q
    Chem Commun (Camb); 2015 Jun; 51(50):10190-3. PubMed ID: 26012560
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Visualizing sodium dynamics in isolated cardiomyocytes using fluorescent nanosensors.
    Dubach JM; Das S; Rosenzweig A; Clark HA
    Proc Natl Acad Sci U S A; 2009 Sep; 106(38):16145-50. PubMed ID: 19805271
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Triplet-Triplet Annihilation Upconversion Based Nanosensors for Fluorescence Detection of Potassium.
    Jewell MP; Greer MD; Dailey AL; Cash KJ
    ACS Sens; 2020 Feb; 5(2):474-480. PubMed ID: 31912733
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Organosilica Nanosensors for Monitoring Spatiotemporal Changes in Oxygen Levels in Bacterial Cultures.
    Huynh GT; Tunny SS; Frith JE; Meagher L; Corrie SR
    ACS Sens; 2024 May; 9(5):2383-2394. PubMed ID: 38687178
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fluorescent nanosensors reveal dynamic pH gradients during biofilm formation.
    Hollmann B; Perkins M; Chauhan VM; Aylott JW; Hardie KR
    NPJ Biofilms Microbiomes; 2021 Jun; 7(1):50. PubMed ID: 34140515
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.