BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 24284431)

  • 21. Design, calibration and application of broad-range optical nanosensors for determining intracellular pH.
    Søndergaard RV; Henriksen JR; Andresen TL
    Nat Protoc; 2014 Dec; 9(12):2841-58. PubMed ID: 25411952
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Charged solvatochromic dyes as signal transducers in pH independent fluorescent and colorimetric ion selective nanosensors.
    Xie X; Gutiérrez A; Trofimov V; Szilagyi I; Soldati T; Bakker E
    Anal Chem; 2015 Oct; 87(19):9954-9. PubMed ID: 26352133
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Persistent Luminescence Nanosensors: A Generalized Optode-Based Platform for Autofluorescence-Free Sensing in Biological Systems.
    Sodia TZ; Tetu HL; Saccomano SC; Letch EG; Branning JM; Mendonsa AA; Vyas S; Cash KJ
    ACS Sens; 2024 Jun; 9(6):3307-3315. PubMed ID: 38826054
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Potassium Sensitive Optical Nanosensors Containing Voltage Sensitive Dyes.
    Xie X; Gutiérrez A; Trofimov V; Szilagyi I; Soldati T; Bakker E
    Chimia (Aarau); 2015; 69(4):196-8. PubMed ID: 26668937
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fluorescent nano-PEBBLE sensors designed for intracellular glucose imaging.
    Xu H; Aylott JW; Kopelman R
    Analyst; 2002 Nov; 127(11):1471-7. PubMed ID: 12475037
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A near-infrared optical nanosensor for measuring aerobic respiration in microbial systems.
    Saccomano SC; Cash KJ
    Analyst; 2021 Dec; 147(1):120-129. PubMed ID: 34854441
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Glucose-sensitive nanofiber scaffolds with an improved sensing design for physiological conditions.
    Balaconis MK; Luo Y; Clark HA
    Analyst; 2015 Feb; 140(3):716-723. PubMed ID: 25426497
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Plasticizer-Free Thin-Film Sodium-Selective Optodes Inkjet-Printed on Transparent Plastic for Sweat Analysis.
    Zhang Q; Wang X; Decker V; Meyerhoff ME
    ACS Appl Mater Interfaces; 2020 Jun; 12(23):25616-25624. PubMed ID: 32426973
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mapping the pharyngeal and intestinal pH of Caenorhabditis elegans and real-time luminal pH oscillations using extended dynamic range pH-sensitive nanosensors.
    Chauhan VM; Orsi G; Brown A; Pritchard DI; Aylott JW
    ACS Nano; 2013 Jun; 7(6):5577-87. PubMed ID: 23668893
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Selection of Aptamers for Metabolite Sensing and Construction of Optical Nanosensors.
    Long Y; Pfeiffer F; Mayer G; Schrøder TD; Özalp VC; Olsen LF
    Methods Mol Biol; 2016; 1380():3-19. PubMed ID: 26552812
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ionophore-based ion-selective optical nanosensors operating in exhaustive sensing mode.
    Xie X; Zhai J; Crespo GA; Bakker E
    Anal Chem; 2014 Sep; 86(17):8770-5. PubMed ID: 25117492
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Chemometric Approaches for Developing Infrared Nanosensors To Image Anthracyclines.
    Del Bonis-O'Donnell JT; Pinals RL; Jeong S; Thakrar A; Wolfinger RD; Landry MP
    Biochemistry; 2019 Jan; 58(1):54-64. PubMed ID: 30480442
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Real-time measurements of dissolved oxygen inside live cells by organically modified silicate fluorescent nanosensors.
    Koo YE; Cao Y; Kopelman R; Koo SM; Brasuel M; Philbert MA
    Anal Chem; 2004 May; 76(9):2498-505. PubMed ID: 15117189
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Optochemical nanosensor PEBBLEs: photonic explorers for bioanalysis with biologically localized embedding.
    Buck SM; Koo YE; Park E; Xu H; Philbert MA; Brasuel MA; Kopelman R
    Curr Opin Chem Biol; 2004 Oct; 8(5):540-6. PubMed ID: 15450498
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Miniature sodium-selective ion-exchange optode with fluorescent pH chromoionophores and tunable dynamic range.
    Shortreed M; Bakker E; Kopelman R
    Anal Chem; 1996 Aug; 68(15):2656-62. PubMed ID: 8694263
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Optical nanosensor platform operating in near-physiological pH range via polymer-brush-mediated plasmon coupling.
    Tokarev I; Tokareva I; Minko S
    ACS Appl Mater Interfaces; 2011 Feb; 3(2):143-6. PubMed ID: 21275381
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Graphene Quantum Dots Integrated in Ionophore-Based Fluorescent Nanosensors for Na
    Wang R; Du X; Wu Y; Zhai J; Xie X
    ACS Sens; 2018 Nov; 3(11):2408-2414. PubMed ID: 30387340
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Real-time measurement of the intracellular pH of yeast cells during glucose metabolism using ratiometric fluorescent nanosensors.
    Elsutohy MM; Chauhan VM; Markus R; Kyyaly MA; Tendler SJB; Aylott JW
    Nanoscale; 2017 May; 9(18):5904-5911. PubMed ID: 28436517
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Recent Developments in Nanosensors for Imaging Applications in Biological Systems.
    Rong G; Tuttle EE; Neal Reilly A; Clark HA
    Annu Rev Anal Chem (Palo Alto Calif); 2019 Jun; 12(1):109-128. PubMed ID: 30857408
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Gel encapsulation of glucose nanosensors for prolonged in vivo lifetime.
    Balaconis MK; Clark HA
    J Diabetes Sci Technol; 2013 Jan; 7(1):53-61. PubMed ID: 23439160
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.