These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 24284778)

  • 1. Behavior of phosphorous and contaminants from molecular doping combined with a conventional spike annealing method.
    Shimizu Y; Takamizawa H; Inoue K; Yano F; Nagai Y; Lamagna L; Mazzeo G; Perego M; Prati E
    Nanoscale; 2014 Jan; 6(2):706-10. PubMed ID: 24284778
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Controlled nanoscale doping of semiconductors via molecular monolayers.
    Ho JC; Yerushalmi R; Jacobson ZA; Fan Z; Alley RL; Javey A
    Nat Mater; 2008 Jan; 7(1):62-7. PubMed ID: 17994026
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanoscale Junction Formation by Gas-Phase Monolayer Doping.
    Taheri P; Fahad HM; Tosun M; Hettick M; Kiriya D; Chen K; Javey A
    ACS Appl Mater Interfaces; 2017 Jun; 9(24):20648-20655. PubMed ID: 28548483
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wafer-scale, sub-5 nm junction formation by monolayer doping and conventional spike annealing.
    Ho JC; Yerushalmi R; Smith G; Majhi P; Bennett J; Halim J; Faifer VN; Javey A
    Nano Lett; 2009 Feb; 9(2):725-30. PubMed ID: 19161334
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Monolayer Contact Doping from a Silicon Oxide Source Substrate.
    Ye L; González-Campo A; Kudernac T; Núñez R; de Jong M; van der Wiel WG; Huskens J
    Langmuir; 2017 Apr; 33(15):3635-3638. PubMed ID: 28351137
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct Dopant Patterning by a Remote Monolayer Doping Enabled by a Monolayer Fragmentation Study.
    Hazut O; Yerushalmi R
    Langmuir; 2017 Jun; 33(22):5371-5377. PubMed ID: 28502172
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Three-dimensional doping and diffusion in nano scaled devices as studied by atom probe tomography.
    Kambham AK; Kumar A; Florakis A; Vandervorst W
    Nanotechnology; 2013 Jul; 24(27):275705. PubMed ID: 23764804
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Contact doping of silicon wafers and nanostructures with phosphine oxide monolayers.
    Hazut O; Agarwala A; Amit I; Subramani T; Zaidiner S; Rosenwaks Y; Yerushalmi R
    ACS Nano; 2012 Nov; 6(11):10311-8. PubMed ID: 23083376
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Boosting the Boron Dopant Level in Monolayer Doping by Carboranes.
    Ye L; González-Campo A; Núñez R; de Jong MP; Kudernac T; van der Wiel WG; Huskens J
    ACS Appl Mater Interfaces; 2015 Dec; 7(49):27357-61. PubMed ID: 26595856
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis and characterization of P δ-layer in SiO2 by monolayer doping.
    Arduca E; Mastromatteo M; De Salvador D; Seguini G; Lenardi C; Napolitani E; Perego M
    Nanotechnology; 2016 Feb; 27(7):075606. PubMed ID: 26789694
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct imaging of 3D atomic-scale dopant-defect clustering processes in ion-implanted silicon.
    Koelling S; Richard O; Bender H; Uematsu M; Schulze A; Zschaetzsch G; Gilbert M; Vandervorst W
    Nano Lett; 2013 Jun; 13(6):2458-62. PubMed ID: 23675857
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engineering of the spin on dopant process on silicon on insulator substrate.
    Barri C; Mafakheri E; Fagiani L; Tavani G; Barzaghi A; Chrastina D; Fedorov A; Frigerio J; Lodari M; Scotognella F; Arduca E; Abbarchi M; Perego M; Bollani M
    Nanotechnology; 2021 Jan; 32(2):025303. PubMed ID: 33007762
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantifying atom-scale dopant movement and electrical activation in Si:P monolayers.
    Wang X; Hagmann JA; Namboodiri P; Wyrick J; Li K; Murray RE; Myers A; Misenkosen F; Stewart MD; Richter CA; Silver RM
    Nanoscale; 2018 Mar; 10(9):4488-4499. PubMed ID: 29459919
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly doped silicon nanowires by monolayer doping.
    Veerbeek J; Ye L; Vijselaar W; Kudernac T; van der Wiel WG; Huskens J
    Nanoscale; 2017 Feb; 9(8):2836-2844. PubMed ID: 28169380
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigation of Boron Distribution at the SiO
    Hsu SH; Wan CC; Cho TC; Lee YJ
    ACS Omega; 2021 Jan; 6(1):733-738. PubMed ID: 33458525
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functionalization of SiO
    van Druenen M; Collins G; Glynn C; O'Dwyer C; Holmes JD
    ACS Appl Mater Interfaces; 2018 Jan; 10(2):2191-2201. PubMed ID: 29240397
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deep level transient spectroscopic investigation of phosphorus-doped silicon by self-assembled molecular monolayers.
    Gao X; Guan B; Mesli A; Chen K; Dan Y
    Nat Commun; 2018 Jan; 9(1):118. PubMed ID: 29317684
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Controlling the dopant dose in silicon by mixed-monolayer doping.
    Ye L; Pujari SP; Zuilhof H; Kudernac T; de Jong MP; van der Wiel WG; Huskens J
    ACS Appl Mater Interfaces; 2015 Feb; 7(5):3231-6. PubMed ID: 25607722
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Toward Defect-Free Doping by Self-Assembled Molecular Monolayers: The Evolution of Interstitial Carbon-Related Defects in Phosphorus-Doped Silicon.
    Gao X; Guan B; Mesli A; Chen K; Sun L; Dan Y
    ACS Omega; 2019 Feb; 4(2):3539-3545. PubMed ID: 31459568
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A reliable method for the counting and control of single ions for single-dopant controlled devices.
    Shinada T; Kurosawa T; Nakayama H; Zhu Y; Hori M; Ohdomari I
    Nanotechnology; 2008 Aug; 19(34):345202. PubMed ID: 21730640
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.