BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 24284953)

  • 1. Quantification of the dielectric constant of single non-spherical nanoparticles from polarization forces: eccentricity effects.
    Gomila G; Esteban-Ferrer D; Fumagalli L
    Nanotechnology; 2013 Dec; 24(50):505713. PubMed ID: 24284953
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantifying the dielectric constant of thick insulators by electrostatic force microscopy: effects of the microscopic parts of the probe.
    Gramse G; Gomila G; Fumagalli L
    Nanotechnology; 2012 May; 23(20):205703. PubMed ID: 22543516
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced dielectric constant resolution of thin insulating films by electrostatic force microscopy.
    Castellano-Hernández E; Moreno-Llorena J; Sáenz JJ; Sacha GM
    J Phys Condens Matter; 2012 Apr; 24(15):155303. PubMed ID: 22442155
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Contrast inversion in electrostatic force microscopy imaging of trapped charges: tip-sample distance and dielectric constant dependence.
    Riedel C; Alegría A; Arinero R; Colmenero J; Sáenz JJ
    Nanotechnology; 2011 Aug; 22(34):345702. PubMed ID: 21795775
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fast and non-invasive conductivity determination by the dielectric response of reduced graphene oxide: an electrostatic force microscopy study.
    Gómez-Navarro C; Guzmán-Vázquez FJ; Gómez-Herrero J; Saenz JJ; Sacha GM
    Nanoscale; 2012 Nov; 4(22):7231-6. PubMed ID: 23073187
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electric polarization properties of single bacteria measured with electrostatic force microscopy.
    Esteban-Ferrer D; Edwards MA; Fumagalli L; Juárez A; Gomila G
    ACS Nano; 2014 Oct; 8(10):9843-9. PubMed ID: 25184827
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanoscale electric polarizability of ultrathin biolayers on insulating substrates by electrostatic force microscopy.
    Dols-Perez A; Gramse G; Calò A; Gomila G; Fumagalli L
    Nanoscale; 2015 Nov; 7(43):18327-36. PubMed ID: 26488226
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Finite-size effects and analytical modeling of electrostatic force microscopy applied to dielectric films.
    Gomila G; Gramse G; Fumagalli L
    Nanotechnology; 2014 Jun; 25(25):255702. PubMed ID: 24897410
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanoscale measurement of the dielectric constant of supported lipid bilayers in aqueous solutions with electrostatic force microscopy.
    Gramse G; Dols-Perez A; Edwards MA; Fumagalli L; Gomila G
    Biophys J; 2013 Mar; 104(6):1257-62. PubMed ID: 23528085
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative electrostatic force microscopy with sharp silicon tips.
    Fumagalli L; Edwards MA; Gomila G
    Nanotechnology; 2014 Dec; 25(49):495701. PubMed ID: 25407683
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of the macroscopic shape of the tip on the contrast in scanning polarization force microscopy images.
    Sacha GM; Cardellach M; Segura JJ; Moser J; Bachtold A; Fraxedas J; Verdaguer A
    Nanotechnology; 2009 Jul; 20(28):285704. PubMed ID: 19550016
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative dielectric constant measurement of thin films by DC electrostatic force microscopy.
    Gramse G; Casuso I; Toset J; Fumagalli L; Gomila G
    Nanotechnology; 2009 Sep; 20(39):395702. PubMed ID: 19724109
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of surface site distribution and dielectric discontinuity on the charging behavior of nanoparticles: a grand canonical Monte Carlo study.
    Seijo M; Ulrich S; Filella M; Buffle J; Stoll S
    Phys Chem Chem Phys; 2006 Dec; 8(48):5679-88. PubMed ID: 17149489
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Theory of amplitude modulated electrostatic force microscopy for dielectric measurements in liquids at MHz frequencies.
    Gramse G; Edwards MA; Fumagalli L; Gomila G
    Nanotechnology; 2013 Oct; 24(41):415709. PubMed ID: 24061045
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Label-free identification of single dielectric nanoparticles and viruses with ultraweak polarization forces.
    Fumagalli L; Esteban-Ferrer D; Cuervo A; Carrascosa JL; Gomila G
    Nat Mater; 2012 Sep; 11(9):808-16. PubMed ID: 22772654
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrostatic interaction in the presence of dielectric interfaces and polarization-induced like-charge attraction.
    Xu Z
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):013307. PubMed ID: 23410460
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dielectric-spectroscopy approach to ferrofluid nanoparticle clustering induced by an external electric field.
    Rajnak M; Kurimsky J; Dolnik B; Kopcansky P; Tomasovicova N; Taculescu-Moaca EA; Timko M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Sep; 90(3):032310. PubMed ID: 25314449
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis of monodisperse TiO2-paraffin core-shell nanoparticles for improved dielectric properties.
    Balasubramanian B; Kraemer KL; Reding NA; Skomski R; Ducharme S; Sellmyer DJ
    ACS Nano; 2010 Apr; 4(4):1893-900. PubMed ID: 20359188
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative scanning near-field microwave microscopy for thin film dielectric constant measurement.
    Karbassi A; Ruf D; Bettermann AD; Paulson CA; van der Weide DW; Tanbakuchi H; Stancliff R
    Rev Sci Instrum; 2008 Sep; 79(9):094706. PubMed ID: 19044445
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Charged nanoparticle in a nanochannel: Competition between electrostatic and dielectrophoretic forces.
    Hulings ZK; Melnikov DV; Gracheva ME
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jun; 91(6):062713. PubMed ID: 26172742
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.